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Online commerce traditionally needs trusted third parties (TTP) to ensure the fairness of the trading, i.e.,
each party gets the other’s item, or neither party does. However, TTPs tend to be a centralized entity to

guarantee the trust, which inevitably increases risks of both privacy leaking and functional failure. Reducing

the dependence on TTPs while keeping fairness is a classic open problem for decades. The strong fairness,

ensuring neither party of the buyer and seller cannot take any advantage over the other, will help to build

trustless trading system that can be highly effective. Participants are able to exchange digitalized commodities

(or data) equally and freely without concern about mistrust.

In this paper, we present cryptographic protocols, proof-of-delivery (PoD), to solve a fundamental problem

of fair data exchange. The protocols ensure that a chunk of data should be delivered faithfully by using a

blockchain, which is not only a trustless third party doing public verification, but also provides cryptocurrencies

to support (strong) fair data exchange, or data trading. We present three variants, PoD-AS, PoD-AS* and

PoD-CR, used for different purposes. PoD-AS supports fastest data delivery with O(n) on-chain computation.

PoD-AS* is like ZKCP (zero-knowledge contingent payment), using zkSNARKs to reduce on-chain computation

to O(1), but with slower off-chain delivery. Following the approach of Fairswap, PoD-CR supports fast data

delivery and small on-chain computation O(loд(n)).
We explain a prototype system – zkPoD, a practical data exchange system based on the PoD protocols and

Ethereum, a popular permissionless blockchain. The system can support delivering large data file up to many

GBs, and the computation complexity is quite efficient for participants with ordinary PCs. Unsurprisingly, the

PoD protocols can be used widely for many data-centered scenarios, like data storage, data querying, data

processing and data distributing etc., achieving fairness for users while protecting their privacy. Our work
also shows that blockchains can be used as trustless third parties, or verifiers, for building better protocols or

systems, as well as expanding the possibility of decentralized applications.

1 INTRODUCTION
Building a protocol for trading digital commodities fairly and efficiently has long stood as a grail for

Internet enthusiasts. It has formally been proved that it is impossible to achieve fairness between

just two parties [18, 26, 32], (see Fig 1 (a)). A third party is needed to resolve the dilemma where the

buyer is unwilling to pay prior to receiving the commodity, while the seller is indisposed to deliver

until the payment is done. To break such deadlock, the third party can withhold the payment until

the buyer confirms the receipt.

There have been many works about how to build three-party fair-exchange protocols since the
90s [1–3, 14, 17, 24]. Unfortunately, most of them impose an extra requirement on the third party:

it has to be not only functional, but also trustworthy, and therein lies the problem.

The past two decades have seen a trend of centralization in the development of trusted third

parties (TTPs). For ordinary users, placing their trust upon fewer entities may suggest less risk,

as one of the most important principles of security states: a smaller trusted base implies a more

secure system. Trusting only one TTP was apparently the most secure choice at the beginning of

the Internet. But as TTPs have grown into giants blanketing most of online activities and gathering

massive personal data, the risk of trusting them inevitably soars. In recent years, we have witnessed

numerous security issues arising from TTP-involved privacy theft [7, 22, 27, 28, 31, 34]. They turn
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out to be neither reliable nor trustworthy after all. They carry with them intrinsic weaknesses,

including:

• Single-point failure risks;

• Attack threats and data leaks;

• Personal data abuse.

The technology of Blockchain [25, 35] demonstrates the possibility of building trustless applica-

tions on peer-2-peer network without any centralized authorities (Fig. 1 (c)). A few research works

tackle the fair-trading problem utilizing blockchains [6, 11, 15, 23]. Instead of relying on TTPs,

these works use blockchain equipped with computing scripts (smart contracts) as a trustless third
party. The blockchain-based third party (BTP) has some significant advantages over its centralized

counterpart. First, its behavior is predictable and trustworthy, since the scripts are running on every

blockchain node, with the entire internal states visible to all outsiders. Moreover, the blockchain

network is highly fault-tolerant that it is unlikely for the BTP to suffer a functional failure. Thirdly,

since the data is transmitted off-chain, no miner can learn any information about it. Finally, it

is possible to protect users’ personal information by techniques like confidential transactions,

anonymity protection, etc., and hence avoid privacy abuse.

One approach [11, 23] relies on zkSNARKs to construct zero-knowledge proofs, putting heavy

computational burden on the provers to build large-scale arithmetic circuits. Alternatively, the

work of proofs of misbehaviors proposes a claim-or-refund strategy [6, 15]. Instead of proving its

own integrity, an honest party is supposed to catch and prove to BTP the other’s misbehavior.

Such protocols lower the computational complexity, but impose an extra “appeal period”, when the

trading process halts for the participants to complain. These protocols are highly innovative, but

still somewhat inadequate for practical uses.

In this paper, we propose an efficient BTP-based fair data exchange approach, named Proof of

Delivery (PoD). In particular, PoD supports atomic-swap like ZKCP [11, 23] conducting delivery

and payment in one atomic operation. We devise two variations which differ in the on-chain

computational complexity. One withO(n) on-chain complexity, PoD-AS, is suitable for permissioned

blockchains, which facilitates fast data delivery at the rate of 3.9MiB/s. Another withO(1) on-chain
complexity is tailored for permissionless blockchains where throughput are limited, about 35KiB/s.

It shifts most of the computations off-chain, but as a tradeoff, the buyers are required to do extra

verification to ensure its security.

PoD also supports an approach of claim-or-refund inspired by Fairswap [6, 15]. In this approach,

the trading is performed in an optimized manner where the buyer is required to submit only a very
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light-weighted proof showing whether the seller is cheating or not. The claim-or-refund approach

amounts to a higher delivery rate of 3.3MB/s, and its computational complexity approximates to

O(loд(n)).
PoD is highly flexible, adapting to various scenarios. It can support partial delivery, where the

seller can send any part of data without re-initialization. It is also possible to trade query results,

i.e., the buyer may pay for queries saying if some keyword exists.

In theory, PoD can integrate with any blockchain which supports smart contracts. Here we

present an Ethereum-based prototype implementation – zkPoD. Any zkPoD nodes can act as either

buyers or sellers. They are connected off-chain via secure channels, and interact on-chain with

a smart contract, practically the judge. A seller node processes some data, generates a tag (meta-

information), and publishes it to the smart contract. Then a buyer node may initiate a purchase

for either a subset or the whole of the target dataset. The two parties operate interactively and

invoke the smart contract following a PoD protocol. In the end if neither party cheats, data will be

delivered from the seller to the buyer, and crypto-coins will be transferred from the buyer to the

seller.

The zkPoD system aims to support practical data exchange. The core library is written in C++

and highly optimized. The performance is efficient enough for exchange large bulk of data. Our

experimental results on a 6-core machine show that: the throughput of data pre-processing is about

11MiB/s on average, the throughputs of data delivery in PoD-AS and PoD-CR are more than 3MiB/s

on average. The protocols of PoD-AS* and PoD-CR cost small gas, less than 200,000 per transaction

(about 0.12 USD for a gas price of 2 GWei and 300USD/Ether) even when the size delivering data

is more than 1TiB. There is still quite some room for further improvement, and we will continue

working on it. Simple and flexible as PoD is, we believe it might serve as an infrastructural protocol

for the next generation Internet, where information and value flow simultaneously.

2 BLOCKCHAIN-BASED FAIR EXCHANGING
Bitcoin [25] and blockchains bring a new paradigm, building decentralized applications, to validate

digital transactions globally and instantly without relying on any central authorities – TTPs.

Ethereum [35] later developed a powerful decentralized system allowing executing arbitrary user-

defined programs, called smart contract [10], on the blockchain. Both Bitcoin transactions and

smart contracts on Ethereum are trustworthy because they are public and transparent. Blockchain

is a distributed system composed of many peer-2-peer nodes, which run a program and store results

by a consensus protocol. The trust of blockchain comes from the capability of Byzantine Fault

Tolerance, i.e., small amount of malicious nodes are unable to interfere with honest nodes which

are keeping a consistent global state.

There raises a question: if we can find a solution to replace TTPs with decentralized blockchain

applications to achieve collaboration, including fair trading, then the risks brought by TTPs can be

eliminated. The solution, if it exists, would solve the problems aforementioned. As we all expect, the

blockchain might probably be an ideal “third party” that is trustless. The jobs of TTPs can be done by

the blockchain or smart contracts on the blockchain, such that any behavior of a blockchain-based

third party (BTP) can be checked by anyone. BTPs play the roles of “public verifiers”, a concept

from security protocols, which is an algorithm to verify if proofs are correct without accessing to

the secrets. But the BTPs are more than public verifiers since all of the interactions of BTPs would

be recorded on the blockchain. Moreover, BTPs are much more flexible to store persistent values or

transfer values.

G. Maxwell and S. Bowe demonstrated a strong fair protocol ZKCP [23] for data trading. Same

with the two protocols above, the seller encrypts the data with a secret K and sends encrypted data

and the hash value of the secret Y to the buyer. Besides, the seller must publish zero-knowledge

2019-08-21 12:42. Page 3 of 1–37.



4 SECBIT Labs.

proofs to show that: (1) the data D is what the buyer wants; (2) the data D is correctly encrypted by

K ; (3) the hash computation Hash(K) = Y is correct for the same K . The proofs can guarantee that

the hash pre-image of Y is exactly the secret, with which the verified data can be decrypted. Then

the buyer desposits bitcoins into a payment script, which can be redeemed if the seller reveals the

hash pre-image of Y . We can see that the seller exchanges the key with the bitcoins simuntanously,

or in an atomic way. The atomicity ensures that the seller should only reveal the correct key to get

the payment. For the buyer, he knows the data is correct and he will get the key to decrypt the data

if he shows the correct hash pre-image. For both parties, the protocol is fair. The protocol heavily

depends on zkSNARK [5, 19, 29], a general solution for zero-knowledge proofs. However, the cost

of generating proofs is considerably high. The demo might be acceptable for trading simple sudoku

solutions but not practical for the data with larger size.

As pointed out by M. Campanelli et al., there are vulneralbilities [11] in the experiments ZKCP

conducted where a malicious verifier might extract information of Sudoku solutions by modifying

the common reference strings of zkSNARK. They have also proposed a variant of ZKCP–ZKCSP

that supports digital service payments. In ZKCP, a proof showing data is valid was sent to the buyer

before payment, while in ZKCSP, the seller sells the “proof” to the buyer and the payment must be

exchanged atomicly, before the buyer learns the knowledge proved by the proof. The approach of

ZKCSP shares the same issue with ZKCP, the unaffordable cost of generating proofs on the seller’s

side.

Another exciting research result, Fairswap, proposed by S. Dziembowski, L. Eckey and S.

Faust [15], adopts the idea of proofs of misbehavior, where coins will be claimed by the buyer

if he finds the key is incorrect [6]. Fairswap solves the issues in ZKCP and ZKCSP, cutting off

the step of generating zero-knowledge proofs showing the validity of the data. Instead, it uses

a new method to show that the encryped data is valid by combining techniques of Merkle tree

and abstract circuits. Thus the computation cost of the seller is reduced dramatically. The seller

reveals the key directly, and then the buyer must check the key and data immediately within a

time window. The buyer can generate a misbehavior proof that only includes the wrong data piece

with its Merkle path, so the complexity of the proof is O(loд(n)). The judge (the smart contract)

verifies the proof with the commitments submitted by the seller. If the proof is valid, the judge

refunds the buyer’s payment. Otherwise, the payment is transferred to the seller. The protocol of

Fairswap is optimal in the sense that if the seller is honest, the judge won’t do the verification.

However, if the seller reveals an incorrect key, the buyer needs to propose a proof to show that

the seller is cheating. Thus the cost of on-chain verification can be very small if both parties are

honest. As we can see, the pattern of Fairswap isn’t atomic like ZKCP. The buyer has to stay online

and claim misbehavior proofs within a predefined time window when the data is fake. Otherwise,

the judge (on the blockchain) would transfer the coins deposited (by the buyer) to the seller after

the time window is closed, even if the seller is cheating. The encryption scheme they used can

be any CCA-secure encryption. The smart idea of proofs of misbehavior is based on computation

upon abstract circuits. All of the intermediate values during the computation are encrypted block

by block, and then all encrypted blocks are hashed into a Merkle tree root. If the key revealed by

the seller is incorrect, it implies that there must exist one gate where the computation is incorrect.

Therefore, the buyer might claim the proof by composing both the inputs and the outputs of that

gate, and their Merkle paths. The judge, implemented as a smart contract, decrypts the inputs and

outputs and checks the computation on the gate by recomputing them.

2.1 Our approach: PoD protocols
We take a different approach to achieve fair exchange, by an extended Schnorr protocol and Pedersen

commitments. The main advantage of our PoD protocols is that the techniques we use are efficient
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Fig. 2. Two Modes of PoD Protocols

and extensible. The protocols support atomic-swap mode (like ZKCP/ZKCSP) and claim-or-refund

mode (like Fairswap) both. Although in the atomic-swap mode, the computation cost limits the

speed of data delivery, the PoD protocol can support data with large size (many GBs) in one single

transaction. Here we informally illustrate the protocol in a minimal setting, to let readers quickly

get the basic idea of our approach.

In the PoD protocol, there are three parties: Alice as a data sender, Bob, as a data receiver and

Julia as the judge. Please keep in mind that Julia is the trustless third party (implemented on the

blockchain) with visible internal states and predictable behaviors. There are three phases of PoD,

Init-phase, Deliver-phase, and reveal-phase. Suppose the data file that is going to be delivered is

denoted bym and k is to denote the key encrypting the data.

We first show the atomic-swap mode of the PoD protocol, as shown in Fig. 2-(a):

(1) Init-phase: All three parties setup with system parameters. Alice publishes the authenticator
of data (σ ) by sending it to Julia such that everyone including outsiders can see it.

(2) Deliver-phase: Alice encrypts the datam to getm with a random one-time key k before she

sendsm and the commitment of k to Bob, who verifies two facts: (i) the encrypted data is

consistent with the authenticator σ ; and (ii) the data is indeed encrypted by k . If Bob accepts

m, he submits a delivery receipt containing the information of k . If the protocol is used for

data trading, Bob is supposed to deposit coins at this step.

(3) Reveal-phase: After confirming the receipt, Alice reveals the key k to Julia to redeem the

coins. Julia finally verifies if the key matches the delivery receipt (remember that there are

information of the key in the receipt). If so, Julia accepts the key. Otherwise, Julia rejects it. If

the protocol is for trading, Julia may transfer the coins, deposited by Bob, to Alice if the key

is accepted. Otherwise, she returns the coins to Bob.

In the protocol, Bob’s action of depositing coins isn’t necessary, and Julia may invoke any smart

contracts when she accepts the key, e.g., writing a ledger, or informing other parties.

We can see that the protocol supports atomic swap, which implies that the actions of “obtaining

data” and “accepting proof” are indivisible. Either they are both complete or failed. Or, the swap

of “coins” and “data” is either complete, both parties get what they want; or the swap is failed,

neither of the two parties get anything. We will present two variants of atomic-swap mode of PoD

in Sec. 3. One of which, named PoD-AS*, is similar to ZKCP, where the Julia only has to verify

a hash pre-image by using zkSNARKs to build zero-knowledge proofs. But PoD also supports a

variant (PoD-AS) to lower the computation burden of Alice by avoiding build proofs of zkSNARK.

The variant is suitable for permissioned blockchain, where the performance (TPS) is high and

computation cost of smart contract is pretty low.
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The claim-or-refund mode, presented in Fig. 2-(b), adopts the approach from Fairswap, realizing

fair trading by using so-called proofs of misbehavior. It requires Bob to submit the evidence (proofs)

to Julia if he does find that Alice is cheating, i.e., showing a wrong key or sending wrong data.

Julia checks the proof claimed by Bob and decides if to punish Alice. The big advantage of Fairswap

is that the computation complexity of proofs of misbehavior is only O(loд(n)). In this mode, the

protocol also has three phases:

(1) Init-phase: All three parties do setup and Alice computes and publishes the authenticator of
data, σ .

(2) Deliver-phase: Alice sends K , the commitment to k , to Bob, as well as the encrypted data into

m with k . Bob verifies two facts: (i) the encrypted data is consistent with the authenticator σ ;

and (ii) the data is indeed encrypted by some key whose commitment is K . If Bob accepts

m, he submits a delivery receipt containing the information of K . If the protocol is used for

trading, Bob is supposed to deposit coins at this step.

(3) Reveal-phase: Alice reveals k to Julia, who creates a timer and waits for Bob to complain. If k

is correct, Bob does nothing, and Alice will be able to withdraw the coins deposited by Bob.

If k is incorrect, Bob must submit a proof showing that the key is wrong within a time limit.

Julia verifies the proof and transfers the coins to Alice if the proof is invalid. Otherwise, the

coins would be returned to Bob.

PoD protocols are built on some cryptographic primitives, and we briefly explain them here.

Homomorphic authenticator. In data trading, Bob’s (buyer) concern is if the data is what he

wants. The PoD protocols uses homomorphic authenticators [33] as the meta-data such that Bob

can confirm the origin and integrity of the data before they are decrypted. The authenticators

are generated from the raw data but don’t leak any information to be learned by adversaries.

The authenticators should be published after initialization, and anyone can access to them. We

use Pedersen commitments [30] to construct data authenticators, which are perfectly hiding and

computationally binding. Besides, the Pedersen commitments are also additively homomorphic,

whichmeans that multiplying two commitments produces a commitment to the sum of the openings.

Off-chain and on-chain verification. If Bob is honest but Alice is possibly malicious, Bob has

to make sure two points: (i) the data are what he wants, and (ii) the key revealed is exactly the

key used to decrypt the data. The verification is divided into two parts: the verification done by

Bob, and the verification done by Julia (in public). The former is done off-chain, such that any

miners or outsiders cannot learn anything about data. The latter should be done by public verifiers

such that Julia may be aware of the data delivery between Alice and Bob. Therefore, Bob should

provide Julia sufficient information about the key for key validation, e.g., the commitment of the

key. That’s why Bob needs to submit a delivery receipt to Julia. Bob verifies two things: (i) the

(encrypted) data is corresponding to the authenticators; (ii) the key of (encrypted) is the opening

to the commitment sent from Alice. The verification on-chain of Julia ensures one thing: the key

should be correct. There is another subtle question – what if Bob submits a fake receipt? If Bob

cheated, Alice wouldn’t get the coin after revealing the real key. Thus Alice must also verify that

the receipt from Bob is correct. The delivery-receipt doesn’t have to be sent to Alice since Julia’s

internal states are visible to everyone, including Alice.

Fairness and zero-knowledge. Suppose Alice is honest and her concern is that Bob might be

malicious. If Bob quits after he receives the (encrypted) data, he might try to extract valuable

information from them. The protocol has to ensure that malicious Bob cannot learn any more

information about the data except the fact that the data is valid. In other words, the verification of

Bob has to be zero-knowledge [16]. PoD protocol uses a variant of Σ−protocol to ensure honest
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verifier zero-knowledge and it can be turned into NIZK by using techniques from Fiat-Shamir

Heuristic [13].

Encryption with one-time pad. Because Alice reveals the key to Julia, Alice has to use a randomly

choosen one-time key for each transaction. The encryption scheme we use is a one-time pad, in

which each data piece is simply added by the key. That implies that the size of keys is equal to

the size of data. With a one-time pad, it is easy to make sure that the data is correctly encrypted

with some key through the homomorphic property of Pedersen commitments. However, if the data

delivered is large, the number of keys will be large. It would lead to high communication complexity

O(n). To solve the problem, the PoD protocol uses a hash function to generate all one-time keys

from a single seed. Also, the PoD protocol uses a linear combination to encode keys to generate

the delivery receipt to reduce the computation on Julia, since computation on finite fields cost less

than ECC exponentiations.

2.2 zkPoD: a practical data exchange system based on Ethereum
Based on PoD protocols, we build a system for data trading – zkPoD. The system contains nodes

and smart contracts. One node is a client program running on the users’ side, while smart contracts

are deployed on Ethereum. Nodes can communicate with each other through TCP/IP connections,

P2P sharing networks, or IPFS network. The system is quite efficient and practical, supporting data

delivery with large data size.

Decentralization and availability. Any user may share data with others without registra-

tion. All they have to do before using the system is to create a key-pair of Ethereum, which

consists of thousands of peer nodes globally and can hardly be devastated. The main advantage of

decentralization is that no one can stop anyone from using the system.

Fairness and trustworthy. The trading protocol is strong fair, i.e., if the protocol ends, neither
party (the buyer or the seller) will have more advantages over the other side. Moreover, if any party

aborts at any step of the protocol, the property of fairness still holds.

Privacy preserving. The system is privacy-friendly in design. No information of users is required.

Any miner of the blockchain can obtain any piece of data, since all data are transferred off-chain.

The intention of buyers can be hidden by using techniques of oblivious transfer.

Blockchain independence The system can deploy the code of Julia on different blockchains

with smart contracts apart from Ethereum. The algorithm of the public verifier, Julia, is rather

lightweight and easy to implement. Unsurprisingly, it is independent of the consensus protocol of

the blockchain.

Efficiency. The performance of zkPoD is good enough for data delivery with many GBs. The

throughput of data is up to 3 MB/s. The heaviest computation burden on users is exponentiations

on ECC groups. The experimental results show it takes only roughly 330s to deliver data with the

size of 1G, with 200,000 gas only.

3 POD PROTOCOLS
The goal of PoD protocols is to realize public verifiable data delivery with a blockchain-based

third party (BTP), who ensures that the delivery process is trustworthy. It is obvious that the

problem of fair trading can be solved by the PoD protocol when cryptocurrencies are added. The

protocol adopts some basic cryptographic tools, e.g., Pedersen commitments, Schnorr protocol and

zero-knowledge proof construction.

In this section, we explain the principle of PoD by presenting a minimal version of protocol

which supports data delivery of a few bytes only. But it is easy for readers to get the ideas.
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3.1 Preliminaries
In figures, we use A

x
−−−→ B to denote that A sends x to B in a secure communication channel. We

use B
y
===⇒ C to denote that B broadcasts y to C publicly while others can be notified of the event

and y can be learned by all parties in the environment.

Definition 3.1 (Discrete Logarithm Assumption). The discrete logarithm assumption holds for

G = ⟨д⟩ with a prime order p if for all non-uniform polynomial time adversaries A such that:

Pr

[
дa = h h

$

← Zp ;a ← A(G,д,h)

]
≈ 0

Lemma 3.2 (Schwartz-Zippel). Let poly be a non-zero multivariate polynormial of degree d over

Zp , then the probability of poly(x1, . . . ,xm) = 0 for randomly chosen x1, . . . ,xm
$

← Zp is at most
d/p.

Definition 3.3 (Pedersen Commitment). A Pedersen commitment scheme is a pair of probabilistic

polynomial time algorithms (Gen,Com) such that:

• Gen(1λ): The algorithm chooses two random generators д ∈ G1, and h ∈ G1; and outputs a

commitment key: ck = (д,h).
• Comck(m; r ): Given a messagem, and a randomness r , outputs a commitment tom:

Com(д,h)(m; r ) = дm · hr

We say a commitment scheme is additively homomorphic if for all valid keys ck, and for all

messagesm1,m2 ∈ Zp and randomness r1, r2 ∈ Zp , we have

Comck(m1; r1) · Comck(m2; r2) = Comck(m1 +m2; r1 + r2)

Theorem 3.4 (Commitment Perfect Hiding). The commitment scheme of (Gen, Com) is perfect
hiding if for all probabilistic polynomial time stateful interactive adversaries A such that:

Pr

[
A(c) = b

(m0,m1) ← A(ck);b ← {0, 1};

r
$

← Zp ; c ← Com(mb ; r )

]
= 1

2

where A outputsm0,m1 ∈ Zp .

Definition 3.5 (Commitment Computational Binding). The commitment scheme of data blocks is

computationlly binding if for all probabilistic polynomial time adversaries A, such that:

Pr

[
Com(m1; r1) = Com(m2; r2)

m1 ,m2

(m1, r1,m2, r2) ← A(ck)
]
≈ 0

where A outputsm0,m1 ∈ M .

Definition 3.6 (MerkleTree). A MerkleTree scheme is a triple of probabilistic polynomial time

algorithms (MKRoot ,MKPath ,MKVerify ) such that:

• MKRoot (x1, . . . ,xt ): The algorithm takes a list of numbers x1, . . . ,xt ; and outputs a value in Zp :

γ = MKRoot (x1, . . . ,xt )

• MKPath (γ , i,x1, . . . ,xt ): Given a Merkle root γ , an index of the element i, and the list of all

members x1, . . . ,xt ; the algorithm outputs a Merkle proof of xi , ξ :

ξ ← MKPath (γ , i,x1, . . . ,xt )

• MKVerify (γ ,xi , ξ , l): Given a Merkle root γ , an element xi , , a proof ξ and the length of set l ;

the algorithm outputs 1 if the element exists in the Merkle tree, and 0 otherwise.

{1, 0} ← MKVerify (γ ,xi , ξ , l)

Definition 3.7 (Random oracle). A random oracle is a function of probabilistic polynomial time

algorithms H such that:
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• H (x1, . . . ,xq ): The algorithm takes a arithmetic circuit C and security

h ← H (x1, . . . ,xq ) = hash(x1 ∥ · · · ∥ xq )

Lemma 3.8 (Random Oracle Addition). Let H be a random oracle with uniform distribution,
then the function H∗ is also a random oracle with uniform distribution for any k1,k2, . . . ,kn :

H∗(x) ← H (x ,k1) + H (x ,k2) + · · · + H (x ,kn )

where (+) is a modular addition.

Definition 3.9 (zkSNARK). A zkSNARK scheme is a triple of probabilistic polynomial time algo-

rithms (zkSetup, zkProve, zkVerify) such that:

• zkSetup(C, 1λ): The algorithm takes a circuit, and security parameter λ; and outputs a pair of

keys, ek and vk:

(ek, vk) = zkSetup(C, 1λ),

• zkProveek(®x , ®y, ®w): Given public circuit inputs ®x , circuit outputs ®y, and private circuit inputs ®w ;

the algorithm outputs an argument (zkSNARK):

π ← zkProveek(®x , ®y, ®w)

• zkVerifyvk(®x , ®y,π ): public circuit inputs ®x , circuit outputs ®y, and an argument π ; the algorithm

outputs 1 if the argument is valid, and 0 otherwise.

{1, 0} ← zkVerifyvk(®x , ®y,π )

3.2 PoD-Mini: minimized proof of delivery
The minimal PoD protocol has three parties, a sender, a receiver and a judge. It has three phases,

aformentioned in Sec 2.1, init-phase, deliver-phase and reveal-phase. The protocol is shown in Fig 3.

Definition 3.10. PoD-Mini protocol. A PoD-Mini protocol is a tuple (I,S,R,J) of probalistic
polynomial time algorithms such that

- I(m) is an algorithm called initializer , which takes as input data/message and outputs data

with a padding block and group elements to S; it also outputs an authenticator and group

elements to R;

- S(m,o,д,h) is an interactive protocol algorithm called sender , which takes as input data/message,

a padding block, and two group elements, and sends encrypted data with other information

to R, and it also outputs keys to J .

- R(σ ,д,h) is an interactive protocol algorithm called receiver , which takes as input the

authenticators and group elements to verify the encrypted data, and outputs a receipt to J .

- J(д,h) is an interactive protocol algorithm called Judge, which takes as input the receipt

from R and the keys from S to verify the keys, and outputs 1 or 0 to accept or reject the

proof.

In the init-phase, I() is invoked to setup system parameters and initializem, which is used to

denote the data that will be delivered to R. The We use Pedersen commitments to hide m with

randomly picked data piece o:

σ = Com(m;o) = дm · ho ;

and Com(m;o) is used to denote a commitment andm,o ∈ Zp are converted into finit field elements

from strings of bits, assuming data are small. We call the commiment of a data block as an authen-

ticator, denoted by σ . In PoD-Mini, σ can only be used to check data integrity. By the property of

computationally binding of Pedersen commitment scheme, the commitment Com(m;o) ofm can be
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I(m)

д,h
$

← G

σ = дm · ho ;o
$

← Zp

S(m,o,д,h) R(σ ,д,h)

kω
$

← Zp

k ← H (kω , 1);k
′← H (kω , 2)

K = дkhk
′

;

k0 ← H (kω , 3);k
′
0
← H (kω , 4)

K0 = д
k0hk

′
0 ;

K0,K
−−−−−−−−−−−−−→

c
$

← Zp
c

←−−−−−−−−−−−−−

m = k + c ·m;o = k ′ + c · o

z = k0 + c · k ; z
′ = k ′

0
+ c · k ′

(m,o,z,z′)
−−−−−−−−−−−−−→

σ c · K
?

= дmho

K0 · K
c ?

= дzhz
′

J(д,h)

(z, c)
?

= ϱ
receipt:ϱ=(z,c)
⇐=============

revealing:kω
=============⇒ m = (m − H (kω , 1))/c

ϱ .z
?

= H (kω , 3) + ϱ .c · H (kω , 1)

Fig. 3. PoD-Mini Protocol

published used as the tag of the data. R can easily verify the opening, (m,o), to know if the data

received is correct.

In the deliver-phase, S and R conduct a three-move interaction. First, S generates two random

keys k,k ′ in Zp by using the random oracle function H (·), such that k can be hidden in a commitment,

K1:

K = Com(k ;k ′) = дk · hk
′

.

S also picks two additional random numbers k0,k
′
0
by the random oracle H (·) to compute another

commitment, which is used to prove zero-knowledge.

K0 = Com(k0;k ′
0
) = дk0 · hk

′
0 .

In the first move, S sends two commitments K0,K to R. And then R returns a random challenge

number c ∈ Zp to S in the second move. In the third move, S encryptsm and o using one-time pad

with the two keys k,k ′. Please note here k is form and k ′ is for o (the padding block).
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m = k + c ·m, o = k ′ + c · o.

Also S hides the two keys by two random numbers generated in the first move.

z = k0 + c · k, z′ = k ′
0
+ c · k ′.

ThenS sends (m,o, z, z′) toR, who verifies if the encrypted data is correct by using the homomorphic

property of Pedersen commitments:

Com(m;o)c · Com(k ;k ′)
?

= Com(m;o).

From the equation above, R knows that (1) the plaintext ofm, sayingm, is bound to Com(m;o); and

(2) there exists a secret key k , bound to Com(k ;k ′), used for encryption. R also verifies if the sender

S actually has the knowledge of (k,k ′) by check the following equation:

Com(k0;k ′
0
) · Com(k ;k ′)c

?

= Com(z; z′)

If R accepts the data, she will go to the next phase, otherwise she aborts. We can see that k and

k ′ are for encryption, and k0 and k ′
0
are random numbers for protecting k and k ′. The interaction

of the deliver-phase can be proved zero-knowledge and knowledge soundness. That’s to say, we

can construct an extractor interacting with a cheating sender to exact the knowledge; and also, a

simulator can be built to cheat an honest receiver with public coins.

In the reveal-phase, R and S interact with J to prove that the data is delivered (or not). If R

accepts the information sent from S, she submits to J a delivery-receipt, ρ = z0, which is the

encoding of k,k0. Then S needs to reveal kω to J if ρ is equal to z0. If the receipt is incorrect, S

aborts. Finally, J verifies the revealed kω by checking the follow equation:

z0
?

= H (kω , 3) + c · H (kω , 1)

Definition 3.11 (Relation-of-Delivery). A relation is a polynomial-time-decidable set R, such that:

R = {((ck,σ ,m, z; ρ),m) : ∃o . σ = Comck(m;o) ∧ ∃k .Decrypt(m, ρ,k) =m ∧ ∃k0 . z = Encode(k, ρ;k0)}

Definition 3.12 (Perfect Completeness of Deliver-phase). The protocol (I,S,R) has perfect com-

pleteness if for all polynomial-time adversaries A,

Pr

 R(σ ,K0,K1, c,m, z, z
′) = 1

(ck,m,o,σ ) ← A(1λ);

(K0,K1,m, z, z
′) ← S(ck,m,o); c

$

← Zp ;
(ck,σ ,m, z;m,k) ∈ R(ρ)

 = 1

Definition 3.13 (Perfect Public-coin Special HVZK of Deliver-phase). The protocol (I,S,R) is
special honest verifier zero knowledge, or sHVZK, if there exists an efficient probabilistic algorithm

E (called a simulator) that can output indistinguishable interactions with the receiver only given

public inputs.

Pr

[
(ck,σ ,m, z;m) ∈ R(ρ)
A(K0,K , ρ,m, z, z

′) = 1

m ← A(1λ); (ck,o,σ ) ← I(m)
(K0,K , ρ,m, z, z

′) ← ⟨S(ck,m,o), ρ,R(ck,σ )⟩

]
=

Pr

[
(ck,σ ,m, z;m,k) ∈ R(ρ)
A(K0,K , ρ,m, z, z

′) = 1

m ← A(1λ); (ck,o,σ ) ← I(m)
(K0,K , ρ,m, z, z

′) ← E(ck,σ ; ρ)

]
where ρ is the public coin randomness used by the receiver.

Definition 3.14 (Computational Knowledge Soundness of Deliver-phase). The interactive proof
system of (I,S,R) is computationally knowledge sound if for all polynomial-time adversaries A,

there exists an efficient deterministic algorithm X() that can always output the datam which is the

plaintext of the encrypted datam.
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Pr

 A(tr ) = 1

m ← A(1λ); (ck,o,σ ) ← I(m);
tr ← ⟨S∗(ck,m,o), ρ,R(ck,σ ))⟩
(ck,K0,K , ρ,m, z, z

′) = tr

 ≈
Pr

 A(tr ) = 1

∧R(ck, tr ) = 1→ (ck,σ ,m, z;m′,k) ∈ R(ρ)

m ← A(1λ); (ck,o,σ ) ← I(m);
(tr ,m′) ← X ⟨S

∗(ck,m,o),_,R(ck,σ )⟩(ck,σ )
(ck,K0,K , ρ,m, z, z

′) = tr


Definition 3.15 (Computational Binding of Reveal-phase). The interactive proof system of (I,S,R,J)

is computationally binding if for all polynomial-time adversaries A,

Pr


kω , k

′
ω

m ← A(1λ); (ck,o,σ ) ← I(m);
tr ← ⟨S(ck,m,o), ρ,R(ck,σ ))⟩
(ck,K0,K , ρ,m, z, z

′) = tr
(kω ,k

′
ω ) ← A(ρ, z, z

′)

1← J(z,kω ) ∧ 1← J(z,k ′ω )


≈ 0

3.3 PoD-AS: Support Atomic-swap for permissioned blockchains
The protocol PoD-Mini can only deliver a piece of data fitted in an integer in Zp . To support data

with larger size, for example size greater than 1MB, we present an extended version, PoD-AS, which

solves the following issues:

1) the size of authenticators should be compact to download, while the size of an authenticator

is equal to the size of a data block in PoD-Mini;

2) the size of delivery-receipts and revealings should be compact for ⊢ to verify.

The basic idea of PoD-AS is that we use Vector Pedersen Commitment and techniques of zero-

knowledge proof construction for matrices [20].

Init-phase: In the init-phase, the data file is splitted into a block matrix of n × s. Each row of the

matrix is called a block, which consists of s slices. The initializer adds one additional column of

random slices m0i to the matrix for padding. The slices of m0i are used for blind factors as o in

PoD-Mini. 
m10 m11, m12, . . . , m1s
m20 m21, m22, . . . , m2s
· · · · · · · · · · · · · · ·

mn0 mn1, mn2, . . . , mns


We use notations with ranges to denote vectors, e.g., r[1,n], m[1,n][0,s]. The initializer needs to

generate n + 1 group elements randomly.

u[0,s] = (u0,u1,u2, . . . ,us ), where ui
$

← G, i ∈ [0, s].

Then she computes n authenticators, each of which is for one row of block matrix.

σi = Com(mi1, . . . ,mis ;mi0) = u
mi0
0
·
∏s

j=1 u
mi j
j ,

The vector σ[1,n] is shared by the sender and the receiver. The size of the vector is only 1/s of the
data file.

Deliver-phase: To encrypt the matrix of data, S needs to generate n ∗ (s + 1) random numbers as

one-time-pad keys. If S naively chooses random keys, they would be too large to reveal to J in the

reveal-phase. Instead, the sender uses a random oracle H (·) to generate these keys from a seed, kω :

ki j = H (kω , i, j).

S can derive a matrix of keys form the seed, and the size of the matrix is (n + 1) ∗ (s + 1).
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k00 k01, k02, . . . , k0s
k10 k11, k12, . . . , k1s
k20 k21, k22, . . . , k2s
· · · · · · · · · · · ·

kn0 kn1, kn2, . . . , kns

.

Note that there are (n + 1) rows and (s + 1) columns of keys. The leftmost column is for encrypting

padding slices, ki0, while the topmost row is for hiding keys in the same column, i.e., , each k0j
is for hiding the keys of (k1j ,k2j , . . . ,knj ). Then S constructs commitments Ki to i-th row of keys,

including the leftmost key ki0 on each row. The vector of commitments K[0,n] are sent to R and

then S can get a challenge number c back from R, which is supposed to be a randomly chosen

number. As the last move of deliver-phase, S encrypts each message slicemi j by ki j . The sender S

also needs to construct a vector of z[0,s] that are arguments showing that S knows the openings of

all commitments K[0,n]. In the third move, S sends R three components: encrypted slices m[1,n][1,s]
and z[0,s]. Please note that all private data sent by S are perfectly hidden, and R will make sure

that there are openings computationally bound to the commitments.

The algorithm ofR is defined in Fig 4. After getting commitments K[0,n] of keys from the sender,R

picks a random number c from Zp and returns it toS. Next,S is supposed to send encrypted data and

auxiliaries. The receiver R then first verifies the encrypted data by homomorphic authenticators:

n∏
i=1

σ (c
i )

i · Ki
?

=

n∏
i=1

(

s∏
j=0

u
mi j
j ). (1)

The check ensures that the encrypted data is associated to authenticators, and the one-time-pad

keys are the key for encryption. R also needs to verify if the sender has the knowledge of the

one-time-pad keys, in other words, S has the openings to K[0,n]. If R accepts the keys and data, he

has to submit a delivery receipt to J (z, c), where z is the aggregation of z[0,s]:

z=
s∑
j=0

zj (2)

Reveal-phase: In the reveal-phase, R sends a receipt (z, c) to J if R accepts the data. Then S

reveals the key k to J if she checks that the receipt is correct. The remaining job of J is to verify

if the key revealed is correct:

z
?

=
∑n
i=0

∑s
j=0 ki j · c

i
,

where ki j is derived from H (kω , i, j).

The protocol is provably special HVZK and has special knowledge soundness. The protocol here is
compatible to support partial data delivery, in which R can tell S which blocks (rows) are interested,

and then they run the deliver-phase as usual.

Also, R doesn’t have to download all authenticators before pariticipating, if he only downloads

a small portion of data. The protocol can easily support to download authenticator on demand and

verify authenticators by using Merkle proofs. S only needs to compute a merkle tree root of σ[1,n],

saying γ , and publish it. S can send σi along with their merkle proofs (merkle path) to R in the

deliver-phase. It will be easy for R to verify if the authenticators are correct.

Efficiency. The communication complexity of PoD-AS is (n · s + 2n+ s + 2), consisting of encrypted
data (n · s), the commitments of keys (n + 1), the encodings of keys s , and authenticators n. The
computation of initialization is (n · s) exponentiations with multiplication on G, or (n) multi-exps.

The computation of proving are roughly (n · s) exponentiations with multiplication on G, (n · s)
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I(m[1,n][1,s])

uj
$

← G, j ∈[0,s]

mi0
$

← Zp , i ∈[1,n]

σi =
∏s

j=0 u
mi j
j , i ∈[1,n]

S(m[1,n][0,s], u[0, j]) R(σ[1,n], u[0,s])

kω
$

← Zp ;

ki j ← H (kω , i, j); i ∈[1,n], j ∈[0,s]

Ki =
∏s

j=0 u
ki j
j ; i ∈[0,n]

K[0,n]
−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−− c

$

← Zp
mi j = ki j +mi j · c

i
; i ∈[1,n], j ∈[0,s]

zj =
∑n

i=0 ki j · c
i
; j ∈[0,s]

m[1,n][0,s ],z[0,s ]
−−−−−−−−−−−−−→

∏n
i=1 σ

(c i )
i · Ki

?

=
∏n

i=1
∏s

j=0 u
mi j
j∏n

i=0 Ki
(c i ) ?

=
∏s

j=0 u
zj
j

z=
∑s

j=0 zj
J()

ϱ
?

= (
∏s

j=0 zj , c)
receipt:ϱ=(z,c)
⇐=============

revealing:kω
=============⇒

ki j ← H (kω , i, j); i ∈[0,n], j ∈[1,s]

ϱ .z
?

=
∑n

i=0
∑s

j=0 ki j · (ϱ .c)
i

Fig. 4. PoD-AS: Atomic-swap

hashes (using a hash primitive to realize the random oracle function), and (n · s + s) multiplications

on Zp . The computation of verifying are mainly (n · s + 2n + s) exponentiations on G. The PoD-AS
protocol avoids expensive computation on G in the reveal-phase. It includes (n · s) hashes and
(2n · s) multiplications and (n · s) additions on Zp .

3.4 PoD-AS*: a protocol for permissionless blockchains
The PoD-AS supporting atomic swap presented in Sec. 3.3 is suitable for permissioned blockchains,

not for permissionless blockchains. For the latters, both the throughput of transactions and compu-

tation burden are quite limited. The main computation on-chain of PoD-AS is computing withO(n)
hashes. The gas consumption would be unacceptable if the dataset is large. The experimental results

show that on Ethereum, one transcation can only deliver data not greater than 350KB when the

gas consumption almost reaches the block gas limit, the maxmium gas consumption of one single

valid block. For permissioned blockchains, where the computation resources of chain nodes are

2019-08-21 12:42. Page 14 of 1–37.



zkPoD: A Practical Decentralized System for Data Exchange 15

rich, larger data can be delivered. Moreover, permissioned blockchains with high TPS can deliver

data that can be cut into many pieces and each transaction delivers only one piece.

In this section, we present a variant protocol PoD-AS* aiming at reducing the computation

on-chain from O(n · s) to O(1), so as to support popular permissonless blockchains, particularly

Ethereum. It uses zkSNARKs [19, 21, 29] to shift the majority of hash computation off-chain.

The computation left on-chain is extremely lightweight, using only one hash computation to do

public verification. However, as a tradeoff, the computation of S and R increases, lowering the

throughput of data delivery. Let’s review the computation on the blockchain, which mainly is key

derivation from a seed, kω by using a random oracle. The algorithm of key derivation is O(n · s). By

using zkSNARKs, the burden of hashes (key deriving) and key verification can be shifted from the

blockchain to the sender S, who constructs proofs {π }l and sends them to R showing that:

(1) the sender S has a knowledge of the key seed, kω , which can be derived to generate many

keys;

(2) the hash value of the key seed is equal to hω ;

(3) the keys derived from kω are precisely used for encrypting the data in the deliver-phase of

PoD.

Thus in the deliver-phase, the receiver R can be convinced that the seed of keys can be hashed to

hω . In the reveal phase, the confirmation submitted by the receiver is no more than a hash value,

hω . The computation of the blockchain is thus reduced to a hash verification, which is O(1). The

protocol PoD-AS* is defined in Fig. 5.

Init-phase: In the init-phase, the scheme of zkSNARK needs to be setup in a trusted way. We omit

the issue of trusted-setup here for simplicity. zkSNARK requires a prespecified circuit which is

restricted to computing fixed-number of hashes. The setup generates a pair of keys, (ek, vk). ek is

for S to generate proofs, and vk is for R to verify proofs. We introduce a parameter q specifying

the number of hashes that the circuit can compute in one cycle. To support computing arbitrary

hashes, we divide the data into many groups, each of which has at most n rows and each row has s

slices. Thus the data size is q · n · s . The initializer also adds one column of slices for padding,mi0.

l = 1

m1,1,0 m1,1,1, m1,1,2, . . . , m1,1,s
m1,2,0 m1,2,1, m1,2,2, . . . , m1,2,s
· · · · · · · · · · · · · · ·

m1,n,0 m1,n,1, m1,n,2, . . . , m1,n,s

l = 2

m2,1,0 m2,1,1, m2,1,2, . . . , m2,1,s
m2,2,0 m2,2,1, m2,2,2, . . . , m2,2,s
· · · · · · · · · · · · · · ·

m2,n,0 m2,n,1, m2,n,2, . . . , m2,n,s

. . .

l = q

mq,1,0 mq,1,1, mq,1,2, . . . , mq,1,s
mq,2,0 mq,2,1, mq,2,2, . . . , mq,2,s
· · · · · · · · · · · · · · ·

mq,n,0 mq,n,1, mq,n,2, . . . , mq,n,s



(q×n×(s+1))

We use notation m[1,q][1,n][0,s] to denote the whole data file. The initializer generates s + 1 group
elements randomly.

u[0,s] = (u0,u1,u2, . . . ,us ), where uj
$

← G, j ∈ [0, s].
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The initializer also computes (n · q) authenticators:

σl i = Com(ml i1, . . . ,ml is ;ml i0) = u
ml i0
0
·
∏s

j=1 u
ml i j
j , l ∈ [1,q], i ∈ [1,n].

The matrix of σ[1,q][1,n] is the public input and shared between the sender and the receiver. The

size of the matrix is also 1/s of the data file. One additional job of the initializer is to setup the

zkSNARK with a circuit, C, which computes hashes:

(ek, vk) = zkSetup(C, 1λ),

where ek is the evaluating key for the sender, vk is the verifying key for the receiver.

Deliver-phase: S firstly chooses two random numbers, a seed for generating keys kω and a blind

factor k ′ω . Then S generates keys by a random oracle, H (·) with the seed kω :

kl i j = H (kω , l , i, j); l ∈ [1,q], i ∈ [0,n], j ∈ [0, s].

For each group of rows, S generates one row of keys, kl,0,[0,s], not for encryption. These keys are

used to blind the keys in the same columns by computing zl j . For each row of keys, S generates a

vector commitment, Kl i for the i-th row in the l-th group:

Kl i =
∏s

j=0 u
kl i j
j ; l ∈ [1,q], i ∈ [0,n].

As the first step of deliver-phase, S sends all commitments, K[1,q][0,n], to R.
kl,0,0 kl,0,1, kl,0,2, . . . , kl,0,s Kl0
kl,1,0 kl,1,1 kl,1,2 . . . kl,1,s Kl1
kl,2,0 kl,2,1 kl,2,2 . . . kl,2,s Kl2
· · · · · · · · · · · · · · ·

kl,n,0 kl,n,1 kl,n,2 . . . kl,n,s Kln


.

R replies back a challenge number c in the second step. Then S encrypts the data with keys and

the challenge number:

ml i j = kl i j +ml i j · c
i
; l ∈ [1,q]; i ∈ [1,n], j ∈ [0, s]

For each group, S computes zl j as follows:

zl j =
∑n
i=0 kl i j · c

i
; l ∈ [1,q]; j ∈ [0, s].

We can see that each zl j is the encoding of keys in one column.

kl,0,0 kl,0,1, kl,0,2, . . . , kl,0,s
kl,1,0 kl,1,1, kl,1,2, . . . , kl,1,s
kl,2,0 kl,2,1, kl,2,2, . . . , kl,2,s
· · · · · · · · · · · ·

kl,n,0 kl,n,1, kl,n,2, . . . , kl,n,s

zl,0 zl,1 zl,2 . . . , zl,s

.

They are used to verify the commitments K[1,q][0,n]. Besides, S needs to generate zkSNARK proofs

showing that:

C(l , j, c, zl j ,hω ;kω ,k
′
ω ) =



(i) kl i j = H (kω , l , i, j); i ∈ [0,n]

(ii) zl j
?

=
∑n
i=0 kl i j · c

i

(iii) hω
?

= H (kω ∥ k
′
ω )

output : 1 if (ii) and (iii) hold

output : 0 otherwise

where l , j, c, zl j , and hω are public inputs, and kω , k
′
ω are private inputs. The circuit C outputs 1 if

the equations (i) (ii) (iii) hold. Otherwise, it outputs 0. The proofs can be generated by using the

evaluating key, common reference string and inputs:

πl j ← zkProveek((l , j, c, zl j ,hω ), 1, (kω ,k
′
ω ))

2019-08-21 12:42. Page 16 of 1–37.



zkPoD: A Practical Decentralized System for Data Exchange 17

I(m[1,q][1,n][1,s ])

uj
$

← G; j ∈ [0, s]

ml i0
$

← Zp ; l∈[1,q];i∈[1,n]

σl i =
∏s

j=0 u
mli j
j ; l∈[1,q];i∈[1,n]

(ek, vk) ← zkSetup(C, 1λ )

S(m[1,q][1,n][0,s ], u[0,s ], ek, crs) R(σ[1,q][1,n], u[0,s ], vk, crs)

kω
$

← Zp ;k ′ω
$

← Zp

kl i j ← H (kω , l, i, j);
l∈[1,q];i∈[0,l ];j∈[0,s ]

Kl i =
∏s

j=0 u
kli j
j ; l ∈ [1, q]; i ∈ [0, n]

K[1,q][0,n]
−−−−−−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−−−−−−− c

$

← Zp
ml i j = kl i j +ml i j · c i ;

l∈[1,q];i∈[1,n], j∈[0,s ]

zl j =
∑n
i=0 kl i j · c

i
;

l∈[1,q];j∈[0,s ]

hω = H (kω , k ′ω )

πl j ← zkProveek((l, j, c, zl j , hω ), 1, (kω , k ′ω ))

l∈[1,q];j∈[0,s ]

m[1,q][1,n][0,s ],z[1,q][0,s ],hω ,π[1,q][0,s ]
−−−−−−−−−−−−−−−−−−−→

∏n
i=1 σ

(ci )
l i · Kl i

?

=
∏n
i=1

∏s
j=0 u

mli j
j ; l∈[1,q]∏n

i=0 Kl i
(ci ) ?

=
∏s

j=0 u
zl j
j ; l∈[1,q]

vcVerify(vk, hω , zl j , c, πl j ); l∈[1,q];j∈[0,s ]
revealing:(kω ,k′ω )

==================⇒ J()
receipt:(hω )

⇐==================

hω
?

= H (kω , k ′ω )

Fig. 5. PoD-AS*

In the third step, S sends four groups of values to R:

(1) encrypted data, m[1,q][1,n][0,s],
(2) encoding of keys, z[1,q][0,s],
(3) hash of seed, hω ,

(4) vc-proofs, π[1,q][0,s].

At last step of deliver-phase, R firstly verifies if the encrypted data is correct w.r.t authenticators

with the keys bound to the key-commitments:∏n
i=1 σ

(c i )
l i · Kl i

?

=
∏n

i=1
∏s

j=0 u
ml i j
j ; l ∈ [1,q].

Then R verifies the proof of knowledge of keys, w.r.t. the key-commitments:∏n
i=0 Kl i

(c i ) ?

=
∏s

j=0 u
zl j
j ; l ∈ [1,q].

Finally, R verifies the proofs showing that each column of keys were precisely derived from the

pre-image of a hash value, hω :

zkVerifyvk((l , j, c, zl j ,hω ), 1,πl j ); l ∈ [1,q]; j ∈ [0, s].

Reveal-phase: In the reveal phase, R sends a delivery-receipt (hω ) to J if R accepts the data.

Next S reveals the key (kω ,k
′
ω ) to J if she checks that the receipt is correct. The job left to J is to

verify if the key revealed is correct:
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hω
?

= H (kω ,k
′
ω ).

The protocol keeps provably special HVZK and special knowledge soundness.

Efficiency. The communication complexity of PoD-AS is (q · n · s + 2q · s + 2q · n + 2), consisting
of encrypted data (q · n · s), the commitments of keys (q · n + 1), the encodings of keys (q · s),
the proofs of keys (q · s) and authenticators (q · n). The computation of initialization is (q · n · s)
exponentiations with multiplication on G, or (n) multi-exps. The computation of proving are

roughly (q ·n · s) exponentiations with multiplication on G, q · s zkSNARK proving, (q ·n · s) hashes
(using a hash primitive to realize the random oracle function). The computation of verifying are

mainly (q ·n · s + 2q ·n +q · s) exponentiations on G and (q · s) zkSNARK verification. The PoD-AS*

protocol has only 1 hash verification in the reveal-phase, extremely efficient for public verification.

3.5 PoD-CR: PoD in claim-or-refund mode
In this section, we present a variant of PoD protocol, PoD-CR, that is inspired by Fairswap. This

protocol doesn’t support atomic-swap, instead, it achieves fair trading by adopting the idea of

claim-or-refund [6, 15]. The main advantage of the protocol is that the computation complexity

off-chain is much smaller than PoD-AS*, and the computation on-chain is much smaller than

PoD-AS. It is well-suited for delivering big data without requirment of immediate payment.

In PoD-CR, after receiving the revealings from S, J doesn’t verify the correctness of the key

immediately. Instead, she leaves the work of verifying the revealings to R. If R checks that the key

is wrong, he is required to submit a proof of misbehavior to J showing that S is cheating. It is

sufficient that R submits a proof only showing one single data slice/key is wrong, not about all

data. Thus J only has to derive one single key to verify the proof in O(1). In additional, R needs

to provide a Merkle proof showing that the wrong key is a leaf node in the Merkle tree which is

committed by R previously. Verifying the Merkle proofs requires the computation of O(loд(n)).
Therefore, the computation complexity of checking the entire proof of misbehavior is O(loд(n)),
compared to O(n · s) in the PoD-AS or PoD-AS* (atomic-swap mode).

As shown in Fig. ??, there are three phases in PoD-CR. In the init-phase, the initializer computes

authenticators in the same way as it does in the atomic-swap mode. The protocol has similar moves

compared with atomic-swap mode.

Init-phase: In the init-phase, the data file is splitted into a block matrix of n×s, with one additional

column of random slices,m0i , as it is in PoD-AS.
m01 m11, m12, . . . , m1s
m02 m21, m22, . . . , m2s
· · · · · · · · · · · · · · ·

m0n mn1, mn2, . . . , mns


The initializer needs to generate n + 1 group elements randomly, u[0,s]. Then she computes n
authenticators, σ[1,n], which is shared by S and R.

Delive-phase: The one-time keys generated by S used for encryption are also generated by the

random oracle H (·). In the first move of the deliver-phase, S sends commitments of the derived

keys:

Ki j = u
ki j
j .

When R receives the commitments K[1,n][0,s], he computes the Merkle tree root of them, and gets

γk . A challenge number is randomly chosen from Zp and sent to S. The sender S encryptsmi j and

getsmi j , which are sent to R.

mi j = ki j +mi j · c
i
; i ∈ [1,n], j ∈ [0, s]
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I(m[1,n][1,s])

uj
$

← G, j ∈ [0, s]

mi0
$

← Zp , i ∈ [1,n]

σi =
∏s

j=0 u
mi j
j , i ∈ [1,n]

S(m[1,n][0,s], u[0,s]) R(σ[1,n], u[0,s])

kω
$

← Zp ;

ki j ← H (kω , i, j); i ∈[1,n][0,s]

Ki j = u
ki j
j ; i ∈[1,n];j ∈[0,s]

K[1,n][0,s ]
−−−−−−−−−−−−−−−→ γk = MKRoot (K[1,n][0,s])

c
←−−−−−−−−−−−−−−− c

$

← Zp
mi j = ki j +mi j · c

i
; i ∈[1,n], j ∈[0,s]

m[1,n][0,s ]
−−−−−−−−−−−−−−−→

σ
(c i )
i ·

∏s
j=0 Ki j

?

=
∏s

j=0 u
mi j
j ; i ∈ [1,n]

J(u[0,s]))

ϱ
?

= (MKRoot (K[1,n][0,s]),n · s)
receipt:ϱ=(γk ,n ·s)
⇐===============

revealing:kω
===============⇒ ξxy = MKPath (γk ,xs + y,K[1,n][0,s])

complain:(x,y,Kxy,ξxy )
⇐====================

MKVerify (γk ,Kxy , ξxy ,n · s)

kxy ← H (kω ,x ,y)

Kxy
?

= u
kxy
y

Fig. 6. PoD-CR: Claim-or-refund mode

The receiver R verifies if the encrypted data are correct w.r.t. the authenticators and commitments

of keys: for every i ,

σ
(c i )
i ·

∏s
j=0 Ki j

?

=
∏s

j=0 u
mi j
j .

Reveal-phase: IfR confirms the data in the deliver-phase, he submits J a delivery-receipt, (γk ,n ·s),

which consists of slice numbers and the Merkle root of all of the commitments sent in the first-move

of deliver-phase. Since the delivery-receipt is visible to S, who can immediately verify if the Merkle

root is correct. If it is, S reveals the seed kω to J . Next, R derives all of the keys from kω , and

verifies if every key ki j is the opening to the commitment Ki j . Suppose for some (x ,y), the key

doesn’t match its commitment:

Kxy , u
kxy
y .

Then R needs to submit a proof of misbehavior, (x ,y,Kxy , ξxy ), where ξxy is the Merkle path of Kxy .

It is computed as follows:
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ξxy = MKPath (γk ,x ,y,K[1,n][0,s]).

The verification of J consists of two steps: (i) verify if Kxy is one of the leaves of the Merkle

tree specified by γk :

MKVerify (γk ,Kxy , ξxy ,n · s)
?

= 1;

(ii) verify if the key kxy is the opening to Kxy :

Kxy
?

= u
kxy
y .

Efficiency. The communication of PoD-CR is (2ns +n+ loд(ns)), consisting of encrypted data (n ·s),
the commitments of keys (n ·s), the Merkle proof loд(n ·s), and authenticators n. The computation of

initialization is (n · s) exponentiations with multiplication on G, or (n)multi-exps. The computation

of proving are roughly (n · s) exponentiations on G, (n · s) hashes (using a hash primitive to realize

the random oracle function), and (n · s) multiplications on Zp . The computation of verifying on

delivery are mainly (n · s + 2n + s) exponentiations on G; while the verification on reveal is (n · s)
The computation of judge is loд(n · s) + 1 hash and 1 exponentiation on G.

4 EXTENSION: QUERIES BY KEYWORDS
The PoD protocol is flexible enough to extend with other features so as to be used in more

applications. The flexibility comes from the organization of the data. To deliver one data block is

almost the same with to deliver big chunks of data in batches. Therefore, online data trading via

PoD can also be seen as a trustworthy database, where anyone can obtain any block of the whole

dataset by sending an index set to the seller. The indices, however, are unfriendly to database users

who don’t know the index of the block in which they are interested. Can PoD allows users to query

as they do to a conventional database? The answer is Yes: PoD can support queries by keywords.

In this section, we show how to extend PoD protocols to support queries by keywords. The queries

are about membership and non-membership, such that a buyer may learn if data records with one

keyword does exist. The results of queries are delivered in the same way with raw data in PoD

protocols. The exchange should be fair and secure by using a blockchain-based trustless third party.

As aforementioned, a data file was organized into an array of n · s to reduce the size of authenti-

cators σ . One of the advantages of array-structure is that it can be seen a table with multiple keys

and values. Each row of the table is a multiple-key record, where some columns can be served as

keywords. By the ECC curve underly we choose, the maximium size of a keyword column is 31-byte

long, which will sufficient for encoding common datatype like name, ID, integer, enumerates and

short arrays. In the first step, we show how to extend with membership and non- membership

queries. The extended protocol allows Bob to send a keyword to Alice, and Alice may reply with

all indices of blocks hit by the keyword. The extended protocol is still fair for both Alice and Bob.

Notably, Alice cannot cheat Bob by replying with wrong indices, and Bob must pay for the query

before learning the indices.

We use Verifiable Random Function (VRF) [8] schemes to build efficient proofs of membership and

non-membership. In the init-phase, I specifies which column is used for queries, and generates an

additional column of data used for query proofs. The basic idea of PoD-QKW is that the additional

data is random numbers generated from the keywords column by using a private key, and they can

be verified by R with a public key.

4.1 Verifiable random function
We first introduce a paring-based VRF scheme. Let e : G1 × G2 → GT be a computable bilinear map

with group G1’s support being Zp . Let G1 and G2 be the generators of G1 and G2 respectively.
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I(m[1,n][1,s])

(pk, sk) ← vqGen(1λ)

(f ,π ) ← vqProve(sk,mi1) i ∈[1,n]

ai = H (f ), i ∈[1,n]

S(sk) R(pk,kw, a[1,n])

kw
←−−−−−−−−−−−−−−−

r
$

← Zp ;

(f ,π ) ← vqProve(sk,kw)

(π r ,дr
1
)

−−−−−−−−−−−−−−−→

vqHomoVerify(pk,kw,π r ,дr
1
)
?

= 1

J(д1)

ϱ
?

= дr
1

receipt:ϱ=дr
1

←−−−−−−−−−−−−−−−

revealing:r
−−−−−−−−−−−−−−−→ f = vqExtract((π r )1/r )

дr
1

?

= ϱ

A = {i | ai=H (f ), i ∈ [1,n]}

Fig. 7. PoD-QKW: Proof of Delivery of Queries with Keywords

Definition 4.1 (Verifiable random function). AVRF is an efficiently computable function F : K×X →

Y with four algorithms:

• VRFGen(1λ) outputs a pair of keys (pk, sk) for some security parameter λ.

• VRFProve(sk,x) computes F (sk,x),π (sk,x), where π (sk,x) is a proof of correctness.
• VRFVerify(pk,x ,y,π ) verifies that y = F (sk,x) using the proof π .

• VRFHomoVerifyProof(pk,x ,π r ,дr
1
) verifies that y = F (sk,x) using the one-time-pad encrypted

proof π r along with дr
1
.

4.2 PoD-QKW
The protocol is shown in Fig. 7.

Init-phase. In the init-phase,I organizes the data into an array of n·s, each of which is a name-value

record. The notation kw[1,n] specifies the set of all keywords.

name : kwi ,value :mi1,mi2, . . . ,mis

The first column is for names (or keywords), and other columns are for values. I generates a pair

of keys:

(pk, sk) ← VRFGen(1λ).

Then I computes one random representation for the name of each row:

(F (sk,kwi ),π (sk,kwi )) ← VRFProve(sk,kwi ).

ai = H (F (sk,kwi )), i ∈ [1,n].

At last, I prepends a[1,n] to the array:
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a1, m11, . . . , m1s
a2, m21, . . . , m2s
· · · · · · · · ·

an , mn1, . . . , mns

.

Deliver-phase. In this phase, R firstly sends a query with a keyword kw to S, who picks up a

random number, r ∈ Zp , and replies a membership/non-membership proof π r encrypted by r , along

with an element дr
1
. S then verifies the encrypted proof:

VRFHomoVerifyProof(pk,kw,π r ,дr
1
)
?

= 1.

If the proof is valid, R submits a delivery-receipt, дr
1
, to J .

Reveal-phase. After R submits a дr
1
to J indicating she accepts the encrypted proof. Then S

checks the receipt and reveal the random number r to J , who finally verifies if the randomness

matches the delivery-receipt.

дr
1

?

= ϱ.

Then R is able to decrypt the proof with the randomness revealed:

π = (π r )1/r .

From π , R can extract F (sk,kw):

F (sk,kw) ← vqExtract(π ).

Finally. R computes H (F (sk,kwi )) and compares it with the vector a[1,n] to get all of the indices of

the blocks with the same name kw .

4.3 BMR verifiable random function
The secure VRF we adopt is BMR-VRF [8] with large domain using nl − BDH assumption and the

augmented cascade.

Gen(1λ): Choose random generators д1 ∈ G1, and д2,u ∈ G2 and random values s1, s2, . . . , s32 ∈ Zp ;

and output a pair of keys: pk and sk.

pk = (д1,д2,u,д
s1
2
,дs2

2
, . . . ,дs32

2
)

sk = (д1,д2,u, s1, s2, . . . , s32).

vqProve(sk,kw): Define a function F (sk,x) on input sk and kw = kw[1],kw[2], . . . ,kw[32] ∈ [l]n :

F (sk,kw) = e(д
[1/

∏
32

k=1(kw [j]i+sj )]
1

,u)

π (sk,kw) = (π1,π2, . . . ,π32), where πi = д
[1/

∏i
k=1(kw [j]i+sj )]

1
.

The algorithm outputs (F (sk,kw),π (sk,kw)):

VRFProve(sk,kw) = (F (sk,kw),π (sk,kw)).

vqVerify(pk,kw,y,π ): The verification is an iteration over proof. First check:

e(πi ,д
(kw [i])
2

дsi
2
)
?

= e(πi−1,д2), for i ∈ [1, 32],

where π0 = д1. Then check: e(π32,u)
?

= y.
vqHomoVerify(pk,kw,π r ,дr

1
): The verification is an iteration over proof. First check:

e(π ri ,д
(kw [i])
2

дsi
2
)
?

= e(π ri−1,д2), for i ∈ [1, 32],

where π r
0
= дr

1
. The second check is ignored.

We may argue that the protocol cannot ensure that for one record, the value does match the

keyword, even if the proof shows that the keyword is related to the index authenticator via VRF.
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Fig. 8. zkPoD System

However, the protocol ensures that the record is bound with index-authenticators such that S

cannot change. The protocol supports multiple keywords straightforwardly.

5 ZKPOD: A PRACTICAL SYSTEM FOR FAIR DATA EXCHANGING
In this section, we illustrate zkPoD, a pratical system for fair data exchanging. It is built on PoD

protocols, supporting data exchanging for any two parties who don’t have to trust each other. The

system uses Ethereum as the blockchain to implement the role of J . In zkPoD, there are mainly

three parties, a buyer (Alice), a seller (Bob) and a judge (Julia). Julia, the role of J , is implemented

as smart contracts on Ethereum (any blockchain with smart contracts can be J ).

As shown in Fig. 8, the system consists of nodes and one smart contract deployed on Ethereum.

One node can either be a buyer or a seller. Nodes can communicate with each other through various

networking protocols, e.g., TCP/IP, BitTorrent, IPFS, or SyncThing. Julia the contract is designed
for multiple users. In other words, many buyers and sellers can share one smart contract. The

zkPoD system deploys one single zkPoD-Contract on Ethereum when the system does setup. The

zkPoD will support more blockchains in the future, e.g., Bitcoin.

5.1 Making PoD practical
There are certainly many issues to be tackled when we realizing the PoD protocols to build a

practical system. from the ways of price negotiation to avoiding the potential security risks on

Ethereum, a permissionless blockchain where anyone can access to the on-chain data and send

transactions.

Fariness. In theory, the PoD protocols are strong fair such that any party cannot gain more advan-

tages over the other. However, it is sophisticated to measure “advantages” in the real world, where

computation power, network bandwidth, interferences and DDos attacks are almost impossible to

formalize. We introduce economic remedies to mitigate the “unfairness” occuring in the zkPoD

practice. One is the way of deposits before Alice and Bob begin to interact. They are both required

to deposite ethers into the contract and behave honestly. The deposite might be forfeited by the

smart contract if any of them cheated.

Security. Ethereum, like all other blockchain systems, is complicated and subtle in security. There

have been many security events occurred on Ethereum varying from consensus protocols to smart

2019-08-21 12:42. Page 23 of 1–37.



24 SECBIT Labs.

contracts. Two attack patterns may affect the security of zkPoD: (i) front-running attack and (ii)

stuffing attack. When a user reveals a secret (e.g., a key) to the chain, an adversary may get learn

about the secret and insert a new transaction to reveal the secret with higher gas price as if the

adversary is the one having the secret. The stuffing attack is more like a (Deny-of-Service) DOS

attack, i.e., an adversary may clog blocks by producing many elaborate transactions with high

gas consumption in order to prevent miners from accept those others’ transactions. The stuffing

attack may thwart proofs of misbehaviors submitted by buyers if they are in the claim-or-refund

protocols, e.g., PoD-CR.

Gas consumption. Every interaction with smart contracts will consume gas, which is fee paid to

miners. Gas system isn’t only the vital part of the Ethereum ecosystem, but also an important issue

of zkPoD. The main design of zkPoD is to reduce the gas consumption as possible as we can. One

way of reducing gas cost is to decrease the number of interactions between nodes and the contract.

The other is to reduce the computation burden of smart contracts.

Engineering performance. The data exchanged could be up to GBs, even TBs. The size of data

will increase unstoppably as bandwidth improves. To support fair exchange of data with large size

can be challenging, posing three main directions of algorithmic optimization, the computation on

zero-knowledge proofs (proving and verifying), the amount of communication, and the computation

on key-receipt verification on the chain. From the beginning, we’ve been upgrading both protocols

and algorithms to the level where users can exchange data with each other using laptops at home.

We also plan to optimize the protocols so as to support mobile devices.

5.2 System setup
In the phase of zkPoD system setup, there are three main jobs to be done:

(i) generating the random generators of the group G;

(ii) generating the common reference strings of zkSNARK scheme;

(iii) deploying the smart contract on Ethereum.

Some important system parameters need to be decided in the phase.

NUMS Generators. Remember that in the init-phase of PoD protocols, the initializer needs to

generate u[0,s], s + 1 elements in groups. The generators must be generated randomly, such that

nobody knows the discrete logarithmic relation between any of uj and uk for any j,k ∈ [0, s], and

j , k . Otherwise, the binding property of Pedersen commitments wouldn’t hold. For example,

if Alice knows α such that uj = uα
0
, she may forge data. They are called “nothing-up-my-sleeve

numbers” generated by a hash function, H2 : {1, 0}
∗ 7→ G.

uj = H2(prefix ∥ j); j ∈ [0, s].

By the hash function, the discrete logarithmic relations between these points are hard to compute.

Precomputing. The vast majority of computation costs are exponentiations over generators. One

effective way to accelerate the computing is to precompute many exponents: u2,u4,u8,u32,u1024, . . .

in the phase of system setup. The precomputings are stored into a local file, which is loaded into

memory when Alice or Bob starts to do transactions.

Trusted-setup of zkSNARK. The system of zkPoD realizes zkSNARKs by using libsnark [4],

which needs a phase of trusted-setup to generate common reference strings, or a pair of ek and vk.
In the trusted-setup, a few random numbers are chosen to compute ek and vk. But these random
numbers cannot be known by both provers and verifiers. Otherwise, any party who knows of these

numbers would break the security of the protocols. Thus the trusted-setup should be done by a

trusted-third party, or through MPC protocols [9]. As shown in Sec. 3.4, the setup zkSetup(C, 1λ)
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needs a circuit as a parameter. In zkPoD, there is only one predefined arithmetic circuit computing

hashes and the setup is done using a MPC protocol to ensure that the setup wouldn’t introduce any

security vulnerabilities.

Smart contract. All nodes of zkPoD interact with one globally single contract deployed on

Ethereum. In the phase of system setup, there are a few parameters to be set when the con-

tract is creating. The first is the value of complain-timeout that is a time windows within which

Bob has to submit a proof of misbehavior of Alice if they exhange data by the protocol of PoD-CR.

If Bob failed to submit the proof before the deadline, his coins would be transferred to Alice, even

if Alice was cheating. The second parameter is the value of withdraw-timeout that Bob must be

waiting before he can withdraw his deposits. There are some other parameters, about the ECC

computation, to be explained in Sec. 6. Certainly, we can redeploy the smart contract if it is updated,

and any zkPoD-node can connect to multiple contracts. But if two zkPoD-nodes exchange data,

they have to connect to the same contract.

5.3 Alice and Bob: Node setup
For users, Alice or Bob, they have to setup the node before doing exchange transactions. The zkPoD

system reuse the account system of Ethereum. In other words, every user has an ID, specified by

a public and private key pair. The node can import a keystore file from any Ethereum wallet, or

create new key pairs for users. Users may also give node a netID, which may be an IP-address, or

an address of P2P networks. Currenly, zkPoD only supports IP-addresses to be netIDs. Alice may

tell Bob her netID offline before their nodes establish the connection. Alice and Bob need to set the

same address of Julia, the judge contract.

(PublicKey) pk ::= ⟨eth-address⟩

(PrivateKey) sk ::= ⟨eth-key⟩

(NetID) netID ::= ⟨ip:port⟩ | · · ·

5.4 Data publishing
Before exchanging data, Alice is required to initialize the data file and publish the meta information

to Bob and Julia. A file F is composed of a name fname, a state fstat, a mode fmode, a protocol proto,
s (slice numbers per row), N (total block numbers), the Merkle root of authenticators γσ , and a

keyword table for querying ψ . The state of a data file can either be Published on the blockchain or

Removed. Alice may choose binary-mode or table-mode to initialize a file according to the structure

of the data file. In either mode, Alice sends the record of F to Julia the contract. Alice can assign a

protocol to the file tag specfiying which protocol Bob should use.

(FileTag) F ::= (fname, fstat, fmode, proto, s,N ,γσ ,ψ )

(Name) fname ::= ⟨string⟩

(FileState) fstat ::= Published | Removed

(Mode) fmode ::= Binary | Table (j1, j2, . . . , jw )

(Protocol) proto ::= AS | AS* | CR | QKW

If the data file is initialized in the binary mode, the organization of the data file can be viewed as

a matrix of N · s , as it is in the PoD protocols. We assume the an initialized data file in binary mode

has N row. Each row is called a block and there are s slices in each block. Please note that each

slice is 31 bytes. In the initialization, each row is prepended a random slice for padding. There are

vertical padding for alignment such that N is a mutiplication of Lhash. After the initialization, the
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Merkle root of authenticators should be computed. Alice keeps all of the authenticators, and she

can send all or parts of them to Bob on demand in the transaction.

The data file initialized in the table mode supports queries with keywords. In the initialization,

Alice chooses the value of w , which should be less than s in the smart contract. In the table-mode, s

is the number of columns. Please note that in the table mode, the size of a column should be less

than 31 bytes. If in table mode, there are two more outputs: (iii) index-meta and (iv) the hash of

index-meta. As we explained in Sec. 4, index-meta data is associated with the value of the indexed

column.

5.5 Global smart contract
(SellerState) A ::= (pkA, skA, [f1, f2, . . . , fn ])

(BuyerState) B ::= (pkB , skB )

(JudgeState) J ::= (pkJ , F,V,U,D)
(FileSet) F ::= {f⇝ F }∗

(RevealSet) V ::= {sid⇝ (Treveal,V)}∗

(Revealing) V ::= CR (kω ) | AS (kω ) | AS* (kω ,k ′ω )

(ReceiptSet) U ::= {sid⇝ U}∗

(Receipt) U ::= CR (sid, pkA, pkB , pricetotal, Treceipt,γ ,n)

| AS (sid, pkA, pkB , pricetotal, Treceipt, c, z,n)

| AS* (sid, pkA, pkB , pricetotal, Treceipt,h)

(Deposits) D ::= {f⇝ (eth, dstat)}∗

(DepositState) dstat ::= withdrawing | deposited

5.6 Deposit and withdraw
The most important thing between Alice and Bob is what is the price of data. The price is discussed

off-line by Alice and Bob, and the price is dynamic according to the relation between supply and

demand. Alice doesn’t put the price into the contract since the modification of value in the contract

is too expensive and slow. Here the basic steps of pricing in zkPoD:

(1) Alice and Bob reach an agreement on price.

(2) Bob writes the price into the delivery-receipt when he received the encrypted-data.

(3) Alice continues the protocol if she agrees on the price, or quits otherwise.

(4) The contract computes the ethers paid to Alice by the price in the receipt.

In zkPoD, Bob should deposit sufficient ethers into the contract before Alice reveals the key. Alice

needs to check if the coins deposited by Bob can cover the payment.

Bob deposits ethers to the smart contract along with the address of Alice. If Bob wants to do

transaction with Carol, Bob has to deposit again with Carol’s (ETH) address. Bob may deposit more

ethers into the contract at any time. If Alice finds that Bob’s deposit is under payment, she can ping

Bob to top up. Please note that the deposits to different sellers are separated, not shared. Bob may ask

the contract to withdraw the ethers he deposited. The contract then sets a flag showing the ethers

are in the “withdrawing” state. At this moment, Alice may be sending the delivery-receipt and the

key to the contract. If so, the contract can cancel the state of “withdrawing”. If after a time period

of Twithdraw, the state is still in “withdrawing”, it will be changed into “deposited” automactically.

Bob may withdraw the ethers immediately. Or, Bob can explicitly change state from “withdrawing”

to “deposited” by depositing ethers to Alice (same seller) in the contract.
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5.7 Security issues on Ethereum
We model the executions of zkPoD as follows:

(World) W ::= (A,B, J , S)

(Session) S ::= (sid, pkA, pkB , f, fmode, proto, step)

(EthTransaction) Tx ::= (pk,m, eth)

(Message) m ::= A→ B(· · · ) | B → A(· · · )
| A→ J (· · · ) | B → J (· · · )

(Ether) eth ::= ⟨n ethers⟩

We use W do specify the state of zkPoD system. It consists of four parts, the states of sellers A, the
states of buyers B, the state of the judge J , the set of sessions S .

(W ,M) 7−→W ′, if A→ B orA← B

To formalize the asynchronism of blockchain transactions, we introduce two binary relations.

One relation (W,m) =⇒ (W′; Tx) specifies the step where a transction Tx is sent to the blockchain

and W changes to W′. The other relation (W; [Tx, Tx′]) ⟲ (W′; [Tx′]) specifies the step where the

transaction Tx is accepted by the blockchain and W changes to W′.

(W,m; [Tx]) =⇒ (W′; [Tx] :: [Tx′])

(W; [Tx1] :: [Tx] :: [Tx2]) ⟲ (W′; [Tx1] :: [Tx2])

Front-running attack.When a normal user sends a transaction calling a constract with sensitive

parameters, the transaction is broadcasted to all miners. Amalicious miner may learn the parameters

inside the transaction before it is packed into a block. The miner, possibly, conduct a front-running
attack by create a higher-priced transaction with the sensitive parameters pretending to be knowing

the parameters. The forged transaction might be packed into blockchain ahead of the one sent

from the normal user because miners generally choose those transactions with higher gas cost.

When considering Ethereum security, one shall not assume that her transactions are packed before

some others. Any smart contract shall not accept the transactions with secret inputs from unknow

users/addresses. For some applications, users should send commitments (to the secrets) to the

contract before they send the plaintext of secrets.

Stuffing attack. The average speed of block generation is around one block per 15 seconds. Each

block consists of a list of transactions, the order of which is determined by miners. Generally, a

miner chooses transactions with higher Gas consumption, since Gas consumption is the fee paid to

the miner as the incentives of generating blocks. There is a system-wide parameter called Gas-Limit
of the block that determines the number of transactions. The sum of the gas cost of all transactions

cannot be higher than the Gas-Limit value. A malicious user of Ethereum thus can conduct stuffing
attacks [? ], discovered firstly in a well-known blockchain-game. The malicious user can initiate

many transactions with switches which can turn the transactions into “active”. At first, these

inactive transactions are not interesting for miners, since the gas cost of these transactions are quite

low when their switches are off. The miners then put them into their memory pools, waiting lists

for transactions before being packed into blocks. After a while, these malicious transactions can be

widespread over the memory pools of many miners. If seeing victim transactions, the attacker starts

to attack by turning on the switches, raising the gas cost to a very high level. Thus miners much

more likely pack these malicious transactions to build a new block rather than victim transactions

sent by others. The attacker clogs the blockchain in a short period of time, and regular transactions

will delay being packed. In the claim-or-refund protocols of zkPoD, the contract requires that Bob

should submit the proof of misbehavior of Alice within a time period. If Alice was cheating and she

might be motivated to conduct the stuffing attacks such that Bob’s proofs cannot be seen by Julia
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the contract before the malicious transactions are all packed into blocks. If the gains through the

attacks, the payment of Bob is higher than the cost of conducting the attacks, Alice will definitely

have incentives to do the attacks. Therefore in the protocols of zkPoD, all of the parameters about

time-windows should be long enough such that the cost of attacks would be unaffordable for Alice.

5.8 Interaction of data exchange
There are a few differences between interactions presented in this seciton and the protocols

presented in Sec. 3. Aformentioned, we merge the transactions sent to the blockchain into one

single transaction to save the trading time. We use one single judge in the zkPoD system, therefore

introducing session-ID and account-ID ( specified by the public keys of sellers and buyers). Regarding

the asynchronism of communications of Ethereums, we introduces time limits to ensure the

termination property of the interactions. We then explain the two protocols, zkPoD-AS* and

zkPoD-CR step by step.

zkPoD-AS*. Suppose Alice published a data file and Bob begins to initiate the transaction of data

exchange, they interact with each other with following the steps below:

(0) Alice and Bob negotiate the price of the data offline.

(1) Bob establishes the communication session with Alice and gets a session ID sid from Alice.

(2) Bob sends a request to Alice, (U ), where U is the index-set of data blocks. mB→A = (sid,U )
(3) Alice sends encrypted datam and authenticators σ to Bob. mA→B = (sid,σ ,K ,m, z,kω ,π )
(4) Bob verifies m and σ and replies back a delivery-receipt to Alice, mB→A = (U, sigreceipt),

UB = (sid, pkA, pkB , pricetotal,kω , Treceipt). The receipt should be signed by Bob’s private key.

(5) Alice checks if the receipt is correct as well as Bob’s signature. Alice also checks through the

contract if Bob’s deposit is greater than the price. Alice then checks if the time before due is

safe (Treceipt). If all of the condition are true, Alice finally submits both the seed of keys and

the receipt signed by Bob to the contract. mA→J = (VA,UB , sigreceipt), where VA = (kω ,k ′ω ).
(6) The contract first verifies Bob’s signature and then verifies if the key-seed is corresponding to

the receipt. If the two conditions are true, the contract transfers the ETHs to Alice, otherwise

does nothing.

zkPoD-CR. The protocol is based on PoD-CR. We also assume that

(0) Alice and Bob negotiate the price of the data.

(1) Bob establishes the communication session with Alice and gets a session ID sid from Alice.

(2) Bob sends a request to Alice, (U ), where U is the index-set of data blocks. mB→A = (sid,U )
(3) Alice sends encrypted datam and authenticators σ to Bob. mA→B = (sid,σ ,K ,m)
(4) Bob verifies m and σ and replies back a receipt to Alice, mB→A = (U, sigreceipt), where UB =

(sid, pkA, pkB , pricetotal,n,γk , Treceipt). The receipt should be signed by Bob’s private key.

(5) Alice checks if the receipt is correct as well as Bob’s signature. Alice also checks through the

contract if Bob’s deposit is greater than the price. Alice then checks if the time before due is

safe (Treceipt). If all of the condition are true, Alice finally submits both the seed of keys and

the receipt signed by Bob to the contract. mA→J = (VA,UB , sigreceipt), where VA = kω .
(6) The contract stores the current time and waits for Bob’s complain. After a period of time (Tc ),

Alice can withdraw ETHs specified by the same price in the receipt.

6 IMPLEMENTATION AND EVALUATION
6.1 Implementation
We implemented a prototype of zkPoD that is composed of three parts: zkPoD-lib, zkPoD-node, and

zkPoD-contract. The zkPoD-lib is a library written in C++ with Golang bindings. It fully implements
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Protocol Init Proving Verification Verification Communication Gas Cost Data/Tx

(on delivery) (on reveal) (Ethereum) (Ethereum)

zkPoD-CR O (N ) O (N ) O (N ) O (N ) O (2N ) O (log(N )) < 100 TiB

zkPoD-AS O (N ) O (N ) O (N ) O (N ) O (N ) O (N ) < 350 KiB

zkPoD-AS* O (N ) O (N ) +O (N /q)π O (N ) +O (N /q)π O (1) O (N ) O (1) Unlimited

Fig. 9. Efficiency Overview

Protocol Throughput Prover (s) Verifier (s) Decrypt (s) Communication (MiB) Gas Cost

zkPoD-CR 3.39 MiB/s 124 119 82 2215 159,072

zkPoD-AS 3.91 MiB/s 130 131 4.187 2215 N/A

zkPoD-AS* 35 KiB/s 34540 344 498 2226 183,485

Fig. 10. PoD Benchmark. (N=1024MiB, s=64, thread_num=12).

PoD protocols, including zkPoD-AS, zkPoD-AS* and zkPoD-CR. It also provides a command line

interface which is friendly for testing and debugging. zkPoD-lib has four main parts as follows:

• pod-setup: initializing system and generating public parameters.

• pod-publish: processing data and computing authenticators.

• pod-core: supporting interaction between two parties, implementing PoD protocols.

• pod-go: providing golang bindings.

The zkPoD-node is written in golang. It implements data exchanging, interacting with contracts,

networking and key management. zkPoD-node also provides HTTP-APIs for building UI. It is now

shipped with a command line interface. The zkPoD-contract implements deposits management,

protocol verification (work of Julia). It is highly optimized for gas consumption.

Currently, zkPoD system supports Linux (Ubuntu >16.04), Windows 10, and MacOSX (> 10.12).

More tests are needed on more OSes. It requires 4GB RAM and 1GB storage at least.

6.2 Evaluation
We experiment on an x86-64 server with Ubuntu 16.04 installed. The server has a 6-core CPU (Intel

i7-8700K 3.70GHz) with 32GB of RAM.

Efficiency overview. As shown in Fig. 9, the protocol of zkPoD-AS is fastest with the speed of

3.91 MiB/s. However, the performance of zkPoD-AS is limited by a blockchain with high cost or low

TPS. On Ethereum, a seller can only deliver 350KiB data per transaction. If users choose zkPoD-CR,

the throughput of delivery is fast, 3.39 MiB/s on average. The cost of smart contract is rather low

so as to support data up to 100 TiB per transaction. The protocol of zkPoD-AS* has lowest data

throughput, only 35 KiB/s because generating zkSNARK proofs are very costly. But it has the best

gas cost on Ethereum with a verification algorithm in O(1). The protocol zkPoD-AS* in theory

supports unlimited data per transaction.

Suppose we have a 1GB data file to deliver, we compare the performance of the three protocols

in the time overhead of proving-before-delivery, verification-on-delivery and decryption-after-

revealing, as shown in Fig. 10. In zkPoD-AS*, the time overhead of proving-before-delivery is about

10 hours, which is the exact bottleneck of data throughput. Also, the overhead of decryption-after-

revealing is high, about 8 minutes, since zkPoD-AS* uses circuit-friendly MIMC-Inv as the hash

function for deriving one-time keys. While in zkPoD-AS, zkPoD uses SHA-3 as the hash function,

which is much more efficient than MIMC-Inv. As for the gas cost, zkPoD-CR wins out, when the

data size is less than 1GB.
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Fig. 11. Gas cost on Ethereum

Gas consumption. In Fig. 11, we show the gas costs on Ethereum when data size varies. In

zkPoD-CR, the gas consumption of verifying proofs of misbehavior has logarithmic correlation

with requested file size due to large gas cost in Merkle proofs. The complexity of O(log(n)) enables
zkPoD-CR to support huge data files. The test data shows that 5-GiB-size file costs only 167,635

gas and the average gas cost increases 9,366 when the file size is ten times of the original size.

In zkPoD-AS, a seller submits proof to the contract directly and the gas consumption is linearly

correlated to the requested file size due to the contract gas cost of n · s loop. The graph shows that

the gas cost is around 7,251,637 when the requested file size is 343.3 KiB, which is close to the

ethereum block gas limit. While in zkPoD-AS*, the gas consumption is a constant around 183,500

no matter how much data is delivered.

Delivery capacity. In Fig. 12, we show the throughput of PoD core (including proving and verify-

ing) for different data sizes. Here the number of slices in one block is set to s = 64. It shows the

relation between pod-core processing speed and file sizes under two modes (n is exponential to

2). The first two graphs, (a) and (b), change in the similar way. As the file size grows, the average

pod-core processing speed increases toward 3MiB and then becomes stable. The speed under

zkPoD-AS protocol is generally higher than that under zkPoD-CR protocol. Please notice that the

overhead of contract verification is not considered in this scene. In the graph of Fig. 12-(c), the

average throughput approaches 30KiB. We can see some zigzags that are caused by padding blocks

added for alignment. They dispear when the size is larger than 10MiB.

Computation of proving and verification. We measure the computation of PoD-core at dif-

ferent parts: (i) the proving computation in the deliver-phase done by Alice, (ii) the verification
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Fig. 12. PoD Throughput Offchain. Suppose that N is aligned to exponents of 2.

computation in the deliver-phase done by Bob, and (iii) the verification computation in the reveal-

phase done by Bob. In zkPoD-CR, we can see that the work of proving is less than the work of

verification of two phases (Fig. 13). In zkPoD-AS, the verification in the reveal-phase is negligible.

In the deliver-phase, however, the work of proving is very close to that of verification. Therefore,

the computation burden of two sides is well balanced. In zkPoD-AS*, the main computation cost

is occupied by zkSNARKs generation, approximately 99% of it. In each of the three protocols, the

computation grows linearly with the size of data.

Scalability andmulti-threading. The majority (98%) of computation in PoD-core is parallelizable.

We use option omp_thread_num to change the thread count and measure the time overhead for

PoD-core to process the same file with different thread counts (1-12). The file size is set to 1 GiB and

s is set to 64. The time overhead of three computations shrinks proportionally when the number of

threads is less than 6, which is the number of CPU cores. (Fig. 14 (a1) (b1) (c1)). We can see that the

data throughput of PoD-core increases almost linearly when the number of threads is less than 6

(Fig. 14 (a2) (b2) (c2)). We expect that the performance of PoD-core will has an excellent speedup if

it is given more CPU cores or running on high-end GPUs.

7 APPLICATIONS AND MORE RELATEDWORK
7.1 Applications
The PoD protocol can be used in any distributed applications where the system has to be aware

of the events that pieces of data have been delivered from one place to another. All distributed

nodes are able to verify the (PoD) proofs generated during delivery by means of smart contracts, or

executable transcation scripts.
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Fig. 13. Run-time Overhead of PoD Core. Proving vs. Verify-on-delivery vs. Verify-on-reveal

P2P network with incentives. Reportedly, P2P networks was accounted for nearly 70% of all

Internet traffic 10 years before, and the propotion dropped down to 6%, of which Bittorrent took

half. As the most widely used application of file sharing, the declining of BT is possibly due to the

fact that it failed to provide the reliable file-sharing services for valuable but not-on-hotspot data.

It is common to see that many files on p2p nodes are mutilated and miserably undownloadable.

BT nodes might have been incented to keep old but valuable data so that more files would be

continually stored in the network. Suppose we use PoD-based smart contracts for a user, Alice, who

wants to pay and download data that hasn’t been popular. Anyone who has downloaded the data,

e.g., Bob, would have very motivation to share any part he has. Alice may only download selected

blocks of data, missing in most BT nodes, from Bob and pay in fine-grained way. By blockchain

and smart contracts, anyone may publish the requirement or provide data with fair prices. PoD

protocols are flexible to measure the contributions of P2P nodes by counting the blocks they relay.

P2P services can easily adopt the incentive mechanism of PoD to attract more personal users to

join and contribute, so as to build a highly effective and vibrant P2P file sharing network.

Content distribution with incentives. Content delivery network (CDN) are widely deployed to

provide high availability and high performance by distributing the service spatially related to

end-users. PoD protocols can be used to measure the workload of content distributing, so that

every distributing transaction can be recorded on a blockchain. The trustless transactions support

flexible economic incentive schemes and help to build P2P content distribution systems. IPFS is
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Fig. 14. PoD-core Performance on Multicores

a popular decentralized network filesystem. PoD protocols can be integrated into IPFS in order

to build an incentive layer to encourage end-users to join the P2P network. The authenticators of

data can be signed by the owner of data, then both end users and public verifiers can easily verify

if the origin of the data without knowing the data content.
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Contents services with automatic micropayment. Traditionally, for content providers, the cost of
connecting to a centralized payment system is high. Moreover, the micropayments are infeasible

unless users deposit enough money to the vendor before receiving services. PoD protocols and

zkPoD system show the possibilities that a trustless payment system can be separated from content

providers completely. For vendors, they can choose any payment system, or build a trustless

payment system by themselves with low cost. For users, they may choose any payment systems

built on blockchains which are much more secure and transparent than trusted third parties. The

protocols protect users from frauds when buying digital contents. One of the big advantages of

PoD protocols is supporting fine-grained data delivery, so that a buyer can make an attempt to buy

only one single block or a few blocks that are randomly chosen to verify with very few coins.

Decentralized storage service. PoD protocols can be combined with proof-of-retrievabiliy (POR)

so as to be integrated into decentralized storage services, like Filecoin, Storj, Siacoin etc. One issue
of these decentralized storage systems is that users not only pay the storage spaces of miners ,

but also pay the retrievability. That is, more downloading, more fees. PoD protocols are natural

to support retrievability with payment. Also, a zkPoD-node can also run as a standalone node

providing storage serivces directly to users if it is extended with a special interface of POR queries.

Next generation of Web. In the era of classic Internet, digital contents produced by individuals are

hard to monetize. When centralized content providers come, they collect digital contents without

paying, re-provide contents (generated from users) back to users for free, and sell advertisements

to make profits. Gradually, the centralized providers monoplized most of profits and however, the

vast majority of content providers cannot get one penny from them. Even worse, the corrupted

centralized providers can manipulate and impair the ecosystem. The trend is opposite to the original

intention of Web. We hope that a new model of Web will be built to be more fair and friendly to

individuals. zkPoD can be served as a low-level protocol to support such a new Web, where users

pay for their favorite pages, and a website can get incentives from others by putting recommended

links. All the browsing records are put on-chain, so that users can easily get the real statistics of a
website, or the one which is truly valuable for them. Such an ecosystem, we believe, is friendly to

newcomers with good contents, also fair to all of us.

7.2 More related work
In 2014, P.Todd and A. Taaki proposed and implemented a data trading protocol [? ] on the Bitcoin

system. The protocol is as follow: the seller uses the hash value of the data as the private key to

generate the public key and the Bitcoin address. A chunk of data is encrypted by a secret that is the

hash value of the public key. The buyer can pay for the chunk of data by sendingf bitcoins to the

address. When the seller spends the bitcoins at the address, she will reveal the public key and thus

implicitly reveal the secret. How can the buyer know if the chunk is authentic? The seller must

reveal some chunks randomly at a block height in the future. The revealed chunks are chosen by

the future block hash. Their approach relies on a fact that if the seller spends the bitcoin, she must

provide a signature where the public key can be exported. The secret revealing and the paying are

thus atomic in the sence and neither party can cheat. But the protocol isn’t strong fair when the

buyer don’t pay even after the seller reveals some chunks. The seller is unwilling to reveal too

much data while the buyer is still concerned with the quality of the data. Paypub protocol is atomic,

by using the Bitcoin payment script to reveal keys. However, buyers cannot know if the data is

what they want before paying. In PoD, data authenticators are used to ensure that any unreveald

data blocks cannot be tampered. PoD also supports atomicity but with only small amounts of data

blocks in the direct mode, while Paypub supports any size of data block.

2019-08-21 12:42. Page 34 of 1–37.



zkPoD: A Practical Decentralized System for Data Exchange 35

S. Delgado-Segura et al. proposed a fair trading protocol [12] on the Bitcoin system. The idea

of their protocol is that: the seller sends encrypted data to the buyer, who then builds a Bitcoin

payment script revealing the encryption key in a clever way if the seller spends the payment before

a specific time. To ensure buyer’s interests, seller must reveal a few blocks of data (specified by the

buyer) before the buyer builds the payment script. This step is indispensable because the buyer

must check if the key encrypting the data is exactly the same key to be revealed by the seller. The

protocol is not strong fair either since the buyer can quit the protocol after obtaining the revealed

blocks. Even though the revealed part is small, a malicious user may “sybil” attack the seller by

creating many buyers, each of which gets a small but different part of the data, to get the entire

data eventually. Moreover, a cheating seller may mix garbage data in to gain advantages over the

buyer with certain probabilities.

These two protocols are not strong fair, in the sense that a mallicious buyer or seller can gain

advantages over the other, even the advantages are small. They are not suitable for being deployed

on permissionless blockchain, where no identity system exists.

8 CONCLUSION AND FUTUREWORK
We have presented three PoD protocols for verifiable data delivery, PoD-AS, PoD-AS* and PoD-

CR. PoD-AS and PoD-AS* achieve atomic swap like ZKCP, and PoD-CR follows the approach of

Fairswap. In general, PoD protocols are low-level protocols of the infrastructure for data economy,

providing trustworthy data delivery, upon which more data-driven applications can be built, e.g.,
data processing, data storage outsourcing, data analysis and so on. Compared with many research

results in the past, PoD protocols heavily rely on blockchains which act as the central parties.

We implement zkPoD system built on PoD protocols, and provides fair data exchanging, where

everyone is able to participate in data exchanging without worrying about frauds. The system is

wired with Ethereum, where smart contracts conduct public verification to guarantee the fairness

without data leaking. It supports trustless keyword queries and the queries can be obsfucated using

oblivious transfer.

To make the system more practical, there are many issues to solve. The throughput of delivered-

data in PoD-AS* is still small, due to the not-so-good performance of zkSNARK proving. We

hope that additional theoretic improvements can optimize zkSNARK work so as to increase the

throughput of data by 2 3 orders of magnitude. The PoD protocols currently don’t support generic

predicates over data like in ZKCP or Fairswap. The research results recently from zero-knowledge

proofs for circuit satisfiabilities, e.g., zkSNARKs and bulletproofs, would be useful to support

generic predicates. Another practical direction is to explore approaches to applying zero-knowledge

proofs to one single data record to support more flexible queries, e.g., substring matching or regular

expression matching.
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