
Notes on ZeroMorph
Yu Guo yu.guo@secbit.io

ZeroMorph [KT23] is an MLE polynomial commitment scheme based on KZG10. In fact, the ZeroMorph scheme is a more general
framework that can be based on different Univariate Polynomial Commitment schemes, such as the FRI-based ZeroMorph scheme.

The core idea of ZeroMorph is to use the Evaluations of MLE polynomials, i.e., the "point value vector", as the "coefficient vector" of
Univariate polynomials. This approach may seem strange, but the framework remains clear and concise.

The key to understanding ZeroMorph lies in understanding the transformations of values on high-dimensional Boolean HyperCubes
and how they correspond to operations on Univariate polynomials.

MLE Polynomials
An MLE (Multilinear Extension) polynomial is a class of Multivariate polynomials defined on the Boolean HyperCube. The degree of
any variable in each term does not exceed 1. For example, is an MLE polynomial, while

 is not, because the degree of is greater than 1.

An MLE polynomial can correspond to a function from Boolean vectors to a finite field, i.e., , and we call its dimension
. The following figure is an example of a three-dimensional MLE polynomial , which can be uniquely represented by the

"point value vector" . This corresponds to the "point value form" representation in Univariate polynomials, i.e., the
Evaluations form.

Of course, an MLE polynomial can also be represented in "coefficient form", i.e., Coefficients form, as follows:

For the example of the three-dimensional MLE polynomial above, we can write it as:

where is the coefficient vector of the MLE polynomial. Note that because MLE polynomials belong to multivariate
polynomials, any representation needs to determine the ordering of terms in the polynomial in advance. In this article and subsequent
discussions, we will base on Lexicographic Order.

For the "point value form" representation of MLE polynomials, we can define it as:

where is a set of Lagrange Polynomials for the -dimensional Boolean HyperCube :

mailto:yu.guo@secbit.io

There exists an conversion algorithm between the "point value form" and "coefficient form" of MLE polynomials, which we
will not discuss in depth here.

We can use ZeroMorph to map an MLE polynomial to a Univariate polynomial, more specifically, to map the "point value vector" of the
MLE polynomial on the Boolean HyperCube to the "coefficient vector" of a Univariate polynomial.

MLE Polynomial to Univariate Polynomial
Let's use a simple example to quickly understand this mapping relationship. Consider a MLE polynomial of dimension 2:

It's easy to verify that its point value representation on the Boolean HyperCube is:

If we adopt the ZeroMorph scheme, it can be mapped to the following Univariate polynomial:

Assuming we have a Univariate polynomial commitment scheme, we can then calculate the commitment of the mapped Univariate
polynomial. For example, suppose we have the following KZG10 commitment scheme SRS:

According to the KZG10 commitment algorithm, we calculate the commitment of as follows:

In the following, we will use the symbol to represent the Univariate polynomial corresponding to the mapping of the MLE
polynomial .

Polynomial Mapping

In this section, we will discuss more mapping situations. For simplicity, let's first consider the case of three-dimensional MLE, i.e.,
.

Suppose is just a constant polynomial, meaning its coefficient vector only has the first term non-zero, and all other elements are zero.
The polynomial can be represented as:

Let's consider what kind of Univariate polynomial this constant polynomial would map to. First, we need to convert it to point value
form. Consider a three-dimensional Boolean HyperCube, regardless of how are valued, this polynomial always
evaluates to on the Boolean HyperCube. This means its point value form is , so its corresponding Univariate
polynomial is:

Now let's consider a two-dimensional MLE polynomial , which is also a constant polynomial, i.e., . Its
corresponding Univariate polynomial is:

We can see that although the coefficient form representations of the two MLE polynomials and are completely the same, the
Univariate polynomials they map to are different. This is because for both Univariate and Multivariate polynomials, their point value
form representations implicitly include the selection of the Evaluation Domain. The Evaluation Domain of is a 3-dimensional Boolean
HyperCube, while the Evaluation Domain of is a 2-dimensional Boolean HyperCube. Therefore, when we calculate the point value
form of polynomials, we need to clarify the choice of Evaluation Domain. For MLE polynomials, if their Evaluation Domain is an -
dimensional Boolean HyperCube, we modify the mapping notation by adding a subscript to the mapping brackets, i.e., . Below
are the two different Univariate polynomials produced by the mapping of on two different Evaluation Domains:

Additive Homomorphism of Mapping

For any two MLE polynomials, if they have the same dimension, such as and , suppose the point value form
representation of the former is

Then their sum is: , and its point value form is:

Thus, the following equation holds:

It's not hard to prove that the above equation holds for MLE polynomials of any same dimension. It's also easy to prove:

Therefore, we say that the mapping has polynomial additive homomorphism and is a one-to-one mapping (Injective and
Surjective).

Low Dimension to High Dimension Mapping

Let's consider a more general polynomial case. Suppose a two-dimensional MLE polynomial has values on a
two-dimensional Boolean HyperCube. Then its corresponding Univariate polynomial is:

And is also an MLE polynomial, with dimension 3. Its values on the Boolean HyperCube are: ,
i.e., the first four terms are zero, and the last four terms are equal to the values of in the two-dimensional MLE polynomial,
as shown in the following figure:

This is easy to explain because when , the overall polynomial value is zero, so the values at the vertices of the square formed by
 are all zero. When , the polynomial equals . Therefore, the values at the vertices of the

square plane where are equal to . Furthermore, we can have this conclusion:

Quick derivation as follows:

Here, raises the degree of , making it fit perfectly in the high-bit region of the 3-dimensional HyperCube (i.e., the region where
).

Next, let's consider the values of on a three-dimensional HyperCube. We'll find that regardless of whether the newly added variable
 is 0 or 1, the polynomial's value only depends on . Therefore, its point value form is equal to the two-dimensional point

value vector copied once, filling up the 3-dimensional HyperCube, as shown in the following figure:

In other words, the point value form of on a three-dimensional HyperCube is , so the Univariate
polynomial it maps to is:

The above equation can be explained as follows: the values on the three-dimensional HyperCube are composed of two parts, and
 with its degree raised by .

Similarly, the values of on a four-dimensional HyperCube are , so the
Univariate polynomial it maps to is:

When raising a low-dimensional MLE to a high-dimensional HyperCube, we see the phenomenon of the low-dimensional HyperCube
constantly copying itself. We can define a new polynomial function, , to represent this repetitive operation:

Obviously, .

MLE Polynomial Remainder Theorem
TODO: What's the correct name for this remainder theorem?

The next question is how to use this MLE to Univariate polynomial mapping to implement the MLE Evaluation Argument protocol.
Specifically, the problem is how to use to verify the correctness of 's value at a certain point, such as ? Although we
already have an Evaluation Argument protocol based on KZG10, unfortunately it's based on Univariate polynomials, not MLE
polynomials. KZG10 uses the polynomial remainder theorem, as in the following formula:

It uses the commitment of the quotient polynomial as the proof for the Evaluation Argument. So how do we transform the
problem of proving MLE's evaluation at a multi-dimensional point, such as , into proving the evaluation of a
Univariate polynomial at one or more points?

The paper [PST13] gives a multivariate polynomial version of the above theorem:

If is an MLE polynomial, it can be simplified to the following formula:

This is because in the MLE polynomial , the highest degree of each variable is 1. For , after
dividing by the factor , the remainder polynomial will no longer contain the variable . So when is
divided by factors to in sequence, the number of variables in the quotient polynomials and remainder
polynomials keeps decreasing one by one, until we finally get a constant quotient polynomial , and of course a constant remainder
polynomial, which is exactly the evaluation of the MLE polynomial at .

Let's assume this final evaluation is , i.e.,

Then we apply the Zeromorph mapping to both sides of the remainder theorem equation (both viewed as MLE polynomials) to obtain
the corresponding Univariate polynomials.

Due to the additive homomorphism of the mapping, we can continue to simplify the above equation:

First, look at the term on the left side of the equation, which directly maps to . Then look at the term
, which maps to ,

Or we can use the function to represent it:

Looking at the term on the right side of the equation, this term is mapping a -dimensional HyperCube to
an -dimensional HyperCube, and then performing the mapping. According to the previous discussion, we need to copy the -
dimensional HyperCube times consecutively to fill the -dimensional HyperCube:

To explain further, because represents a coefficient vector with an interval of , its definition expands as follows:

Its coefficient vector is:

Suppose there is a degree-limited polynomial , satisfying , then the polynomial represents a
polynomial of degree repeated times with an interval of , ultimately resulting in a polynomial of degree .

Finally, there's the term , how do we continue to simplify it?

We can construct its mapping in two steps. First, look at which can be represented by a -dimensional
Hypercube, then when multiplied by a new variable , it becomes a -dimensional HyperCube. This new Hypercube can be
divided into two parts, one part is all zeros (when), and the other part is exactly . So we first use the

 function to construct a repetition pattern of HyperCube with an interval of , then repeat the -dimensional HyperCube
 times, so we get the following polynomial.

However, this is only the first step. The above Univariate polynomial is not equal to , because in each
repeated -dimensional HyperCube of the former, the part where is zero, while the part where is filled with the

-dimensional HyberCube , which is opposite to the HyperCube we want. We need to add a shift factor like
to it, so that we can swap the position of the -dimensional HyperCube corresponding to (from the low-bit region to the high-bit
region):

The following figure demonstrates with a specific example where . The left side is the 5-dimensional HyperCube before
shifting, where the upper and lower half fields represent the fifth dimension, and each half field has two three-dimensional cubes
representing the fourth dimension. We can see that only the three-dimensional cube when corresponds to ,
while when , the three-dimensional cube is all zero. The right side of the figure below is the 5-dimensional HyperCube after
shifting, where the cube has been shifted to the right, that is, to the region corresponding to .

At this point, we can obtain the key equation of the Zeromorph protocol:

KZG10-based Evaluation Argument
Note that the Zeromorph equation we derived in the previous section is an equation about Univariate polynomials. We can write it
briefly as:

Here and are defined as follows:

To prove that the value of at the point is , we only need to check if the above polynomials
are equal. Here, we use the idea of the Schwartz-Zippel lemma: let the Verifier randomly choose a point , and then let the Prover

provide the values of and , so that the Verifier can verify whether the following equation holds:

However, this is not enough, because what the Prover actually commits to is . To ensure that the MLE remainder polynomial
relation holds, we must enforce that the degrees of all quotient polynomials are less than , i.e., , to ensure that
the Prover has no room for cheating.

Both FRI and KZG10 provide methods to prove . In this article, we only consider the Zeromorph protocol based on KZG10.
A simple Degree Bound proof protocol based on KZG10 is as follows:

The Prover provides and additionally and sends them to the Verifier,

The Verifier verifies the following equation:

Here, the role of is to align the Degree of to . Because in the KZG10 SRS, the maximum Degree of
polynomials that can be committed is , so if the Degree of exceeds , then , making it impossible to
commit using the KZG10 SRS. Conversely, if the Prover can correctly commit to , it proves that .

Protocol Description

Below, we first give a simple and naive protocol implementation for easy understanding.

Public Input

Commitment of MLE polynomial :

Evaluation point

Evaluation result

Witness

Point value vector of MLE polynomial on -dimensional HyperCube

Interactive Process

Round 1: Prover sends commitments of remainder polynomials

Calculate remainder MLE polynomials,

Construct Univariate polynomials mapped from remainder MLE polynomials

Calculate and send their commitments:

Round 2: Prover calculates, , as the Degree Bound proof of , and sends them to
the Verifier

Round 3: Verifier sends a random number

Round 4: Prover calculates auxiliary polynomial and quotient polynomial , and sends

Calculate ,

Calculate and its commitment , as proof that takes the value zero at

Round 5: Verifier verifies the following equations

Construct the commitment of :

Verify

Verify if are correct, i.e., verify the Degree Bound of all remainder polynomials: , for

Efficiency Overview

Proof size:

Verifier computation: ,

Optimized Protocol
In the naive protocol, there are quotient polynomials, and their Degree Bound proofs have elements, which is obviously not
efficient enough. However, we can prove these degree bounds in batch. Here's the traditional batch proof approach:

Verifier first sends a random number

Prover aggregates the quotient polynomials together to get , and when aggregating, aligns the Degree of these quotient
polynomials to the same value, which is the Degree of the largest quotient polynomial :

Prover sends the commitment of ,

Verifier sends a random number

Prover constructs polynomial , which takes the value zero at , i.e.,

Prover constructs quotient polynomial and aligns its Degree to the maximum Degree Bound , then proves ,
and sends the commitment

Verifier has and , he can restore the commitment of based on the following equation:

Verifier only needs two Pairing operations to verify , thus obtaining the proof that Degree Bounds hold

Moreover, Verifier can send a random number to further aggregate the evaluation proofs of and , because they both
take the value zero at .

Below is the optimized version of the Zeromorph protocol, refer to Zeromorph paper [KT23] Section 6. The main optimization technique
is to aggregate multiple Degree Bound proofs together, and also aggregate the evaluation proof of together. This way, only two
Pairing operations are needed for verification (this version does not consider the Zero-knowledge property for now).

Public Input

Commitment of MLE polynomial mapped to Univariate polynomial :

Evaluation point

Evaluation result

Witness

Evaluation vector of MLE polynomial :

Protocol

Round 1: Prover sends commitments of remainder polynomials

Calculate remainder MLE polynomials,

Construct Univariate polynomials mapped from remainder MLE polynomials

Calculate and send their commitments:

Round 2: Verifier sends a random number to aggregate multiple Degree Bound proofs

Round 3: Prover calculates and sends its commitment

Calculate ,

Round 4: Verifier sends a random number to challenge the polynomial evaluation at

Round 5: Prover calculates and

Calculate ,

Calculate ,

Calculate quotient polynomials and

Round 6: Verifier sends a random number to aggregate and

Round 7: Prover calculates and sends its commitment

Calculate

Round 8: Verifier verifies the following equations

Restore the commitment of :

Restore the commitment of :

Verify and

Summary

Summary
Overall, Zeromorph is a concise protocol. It directly maps the point value form of MLE to the coefficients of Univariate polynomials, and
then uses the KZG10 protocol to complete the Evaluation proof. Subsequent articles will discuss how to combine Zeromorph with the
FRI protocol to implement MLE PCS.

Reference:
[KT23] Kohrita, Tohru, and Patrick Towa. "Zeromorph: Zero-knowledge multilinear-evaluation proofs from homomorphic univariate
commitments." Cryptology ePrint Archive (2023). https://eprint.iacr.org/2023/917

[PST13] Papamanthou, Charalampos, Elaine Shi, and Roberto Tamassia. "Signatures of correct computation." Theory of
Cryptography Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. https://eprint.iacr.org/2011/587

https://eprint.iacr.org/2023/917
https://eprint.iacr.org/2011/587

	Notes on ZeroMorph
	MLE Polynomials
	MLE Polynomial to Univariate Polynomial
	Polynomial Mapping
	Additive Homomorphism of Mapping
	Low Dimension to High Dimension Mapping

	MLE Polynomial Remainder Theorem
	KZG10-based Evaluation Argument
	Protocol Description
	Efficiency Overview

	Optimized Protocol
	Summary
	Reference:

