
Notes on Virgo-PCS  
Virgo is a zkSNARK proof system based on the GKR protocol. Unlike Libra, Virgo adopts a different
polynomial commitment scheme, referred to as zkVPD (Verifiable Polynomial Delegation) in the paper.
Virgo-zkVPD is based on the FRI (Fast Reed-Solomon IOP) protocol derived from the STARK system, making it
a proof system that doesn't require a trusted setup. Its security assumptions are based on information
theory and the collision resistance of hash functions.

This article introduces the protocol principles of Virgo-PCS, which differ slightly from the original paper. The
PCS system in the original paper supports arbitrary multivariate polynomials, while this article only
considers MLE polynomials.

1. Protocol Principles  
For any MLE polynomial, , it can be expressed in the following coefficient form (or
Monomial form):

 

Where  is the coefficient vector, and  is the binary
representation of  (Little Endian).

If we consider how to prove the evaluation of this polynomial at a given point , i.e.,
, we only need to prove the following "sum":

 

The approach of Virgo-PCS is similar to PH23-PCS, using a Univariate Sumcheck protocol to prove the above
sum. The Prover first commits to , then proves through the following Univariate Sumcheck formula:

 

Here,  is a multiplicative subgroup of the finite field , with a size of . The polynomial
 is the vanishing polynomial of . The polynomial  encodes the vector

:

 

Then the Prover calculates the FRI commitment of  and sends it to the Verifier. The Prover and Verifier
then use the FRI protocol to prove the existence of the following Low Degree quotient polynomial :

 

Clearly, if we can prove that , then we have proven that .



Here is an explanation of how to convert the proof of the above "sum" into proving . To
prove , we can first encode  and  as polynomials  and  over , and then
convert it to proving

 

The degree of  is . By decomposing , we get

 

where  and . Therefore, the proof of the "sum" can
be converted into proving

 

The second-to-last equality above is obtained from the following lemma.

Lemma ([BC99]) Let  be a multiplicative coset of , and  be a univariate polynomial over  with
degree strictly less than . Then .

Now we only need to prove  and . This can be converted into proving that the
polynomial

 

has a degree strictly less than . The above polynomial is

 

Thus, proving the "sum" is converted into proving .

This approach is generally correct, but the Verifier needs  work because they need to calculate the
values of  at  sampling points. And  must be a publicly computable vector from .

The Virgo paper suggests that computing the value of  at a point can utilize a GKR protocol,
delegating the Verifier's computation to the Prover while ensuring the correctness of the computation
through the GKR protocol. This way, the Verifier only needs  work.

This GKR circuit is divided into four parts:

1. Calculate the value of  based on 

2. Calculate the coefficient vector of  using the IFFT algorithm based on 

3. Calculate the values of  on the Extended Domain  based on the coefficient vector of 

4. Filter out the values of  on  according to the FRI-Query index set  provided by the
Verifier

Since all calculations in this GKR protocol are based on public values, and the input length of the circuit is
, the depth of the circuit is , and the width of the circuit is , the Verifier's

computational complexity is only  to complete the verification.

2. Simplified Protocol



2. Simplified Protocol  
Protocol Parameters  

1. Domain  is a multiplicative subgroup of the prime field , with size .

2. Extended Domain  is a multiplicative subgroup Coset of size , where  represents
the code rate.

Commitment Calculation  

The Prover calculates the commitment value  of  similar to the general FRI

protocol, calculating the values of the corresponding Univariate polynomial  on .

 

Evaluation Proof  

Public Input  

1. 

2. 

3. 

Round 1.  

1. Calculate , and construct , whose Evaluation is 

 

1. Construct , and calculate its commitment , where  satisfies the following equation:

 

 

Round 2.  

The Prover and Verifier use the FRI protocol to prove the existence of . In the Query phase of the
protocol, the Verifier provides an index set , and the Prover calculates the values of  and  on

:

 

 

Here, all  are elements in .

Round 3.  

The Verifier checks the correctness of .



 

 

Round 4.  

The Prover and Verifier run the GKR protocol to calculate the values of , and output the values of
, where  is the -th element in the multiplicative subgroup .

Round 5.  

The Verifier verifies the correctness of each folding step in the FRI protocol using .

3. Supporting Zero-Knowledge  
To support the Zero-Knowledge property, Virgo introduces random numbers in two places:

1. A Mask polynomial  is added to the commitment of 

2. In the Univariate Sumcheck protocol, a random polynomial  is introduced. When verifying
, it simultaneously proves .

Commitment Calculation  

The Prover samples a random polynomial  with Degree , i.e., containing  random numbers.

 

 

Clearly, .

Evaluation Proof  

Public Input  

1. 

2. 

3. 

Witness  

1. Coefficient vector  of the MLE polynomial 

2. Random polynomial 

Round 1.  

1. The Prover calculates , and constructs , whose Evaluation is 

 

2. The Prover samples a polynomial  with Degree , whose sum on  is 



 

3. The Prover calculates the commitment of 

 

Round 2.  

1. The Verifier provides a random number  to aggregate the sums of two different Sumcheck protocols.

 

2. The Prover constructs , and calculates its commitment , where  satisfies the following
equation:

 

 

Round 3.  

The Prover and Verifier use the FRI protocol to prove that the Degree of  is less than . This
includes  rounds of Split-and-fold.

Round 4.  

1. The Verifier samples  random indices, , and requires the Prover to provide the values of ,
, and  on . Here  is the -th element in .

2. The Prover sends the values of , , and  on , along with the Merkle paths.

 

 

 

Round 5.  

The Prover and Verifier run the GKR protocol to calculate the values of , and output the values of
, where  is the -th element in the multiplicative subgroup .

Verification  

1. The Verifier checks the correctness of .

 

 

 



2. The Verifier verifies the correctness of each folding step in the FRI protocol using
.

4. Summary  
Virgo-PCS is one of the earliest protocols to use the MLE-to-Univariate approach to construct polynomial
commitments. It is also one of the earliest protocols to use Small Field, Mersenne-61 prime field to improve
performance. Although the Virgo-PCS protocol requires the MLE polynomial to be given in Coefficient form,
if we only consider the commitment of the MLE polynomial, we can directly use the Evaluation (Lagrange
Basis) form of the MLE polynomial for proof without converting the MLE polynomial to Coefficient
(Monomial Basis) form.
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