
Missing Protocol PH23-PCS (Part 3)  
This article adds support for Zero-knowledge to the PH23-KZG10 protocol.

1. How to Support ZK  
To make the PH23-KZG10 protocol support ZK, we need to modify two parts of the protocol. First, we need
to support Hiding in the KZG10 sub-protocol, which means that no information other than the evaluation
will be leaked in any Evaluation proof. Second, we need to ensure that no information about the Witness
vector  is leaked in the PH23 protocol.

First, we need a Perfect Hiding KZG10 protocol that can guarantee that no information other than the
polynomial evaluation is leaked after each opening of the polynomial. The following is the KZG10 protocol
from [KT23], with its main ideas derived from [PST13], [ZGKPP17], and [XZZPS19].

Hiding KZG10  

 

The commitment of a polynomial  is defined as:

 

According to the properties of polynomial rings,  can be decomposed as:

 

The commitment of the quotient polynomial is calculated as follows, also requiring a Blinding Factor  to
protect the commitment of .

 

The Prover also needs to calculate an additional  element below to balance the verification formula:

 

Then, the Evaluation proof consists of two  elements:

 

Thus, the Verifier can verify using the following formula:

 

ZK for Sum Proof  

In the process where the Prover uses the accumulation polynomial  to prove the sum value,
information about the  vector, including information about the Witness , would also be leaked. Therefore,
we need a ZK version of the sum proof protocol.

We have a multiplicative subgroup  of order :



 

We denote  as the Lagrange polynomials with respect to , and  is the
vanishing polynomial on .

Suppose we have a vector  with  elements, and we want to prove . The
Prover has actually computed the commitment of , denoted as .

 

Round 1  

First, we need to determine how many times  will be opened, for example,  will be opened at 
and . Then we introduce a random polynomial: ,

 

This polynomial contains four random factors. Why four? We'll see later.

The Prover then computes the commitment of  and introduces an additional Blinding Factor :

 

The Prover computes a new sum :

 

The Prover sends  and  to the Verifier.

Round 2  

The Verifier sends a random challenge  to the Prover.

The Prover constructs a new polynomial  satisfying

 

The Prover sends a mixed sum value  to the Verifier:

 

At this point, the Prover and Verifier convert the sum proof target  into
.

Round 3  

The Verifier sends another random number  to the Prover.

The Prover constructs constraint polynomials  satisfying

 

The Prover constructs polynomial  satisfying

 



The Prover computes the quotient polynomial  satisfying

 

The Prover computes the commitment of , , and sends 

 

The Prover computes the commitment of , , and sends 

 

Round 4  

The Verifier sends a random evaluation point 

The Prover constructs quotient polynomials , , , and  satisfying

 

 

 

 

The Prover computes the commitments of the four quotient polynomials and introduces corresponding
Blinding Factors 

 

The Prover also needs to construct four corresponding Blinding Factor commitments and send them to the
Verifier:

 

Here we can see that during the proof process, the Prover needs to evaluate four polynomials, and the
evaluations of these four polynomials would all leak information about . Therefore, the Prover adds a
random polynomial  containing two additional random factors in Round 1. This way, all polynomial
evaluations in the proof process are performed on , rather than directly computing and evaluating

.

Proof  



 

Verification  

The Verifier first checks the following equation:

 

where  is computed by the Verifier, and  is calculated using the following equation:

 

Then the Verifier checks the correctness of :

 

2. ZK-PH23-KZG10 Protocol (Optimized Version)  
Below is the complete PH23-KZG10 protocol supporting Zero-knowledge.

Precomputation  

1. Precompute  and 

 

 

2. Precompute the Barycentric Weights  on . This can accelerate

 

3. Precompute the KZG10 SRS for Lagrange Basis

Commit Computation Process  

1. The Prover constructs a univariate polynomial  such that its Evaluation form equals

, where , which is the value of  on the Boolean Hypercube
.

 



2. The Prover samples a random number  to protect the commitment of .

3. The Prover computes the commitment of , , and sends 

 

where  have been obtained in
the precomputation process.

Evaluation Proof Protocol  

Common inputs  

1. : the (uni-variate) commitment of 

2. : evaluation point

3. : The computed value of the MLE polynomial  at .

Recall the constraint of the polynomial computation to be proven:

 

Here  is a public challenge point.

Round 1.  

Prover:

1. Compute vector , where each element 

2. Construct polynomial , whose evaluation results on  are exactly .

 

3. Compute the commitment of , , and send 

 

4. Construct a Blinding polynomial , where  are
randomly sampled Blinding Factors.

5. Compute the commitment of , , and send 

 

6. Compute , and send , where  is defined as:

 

Round 2.  

Verifier: Send challenge numbers 

Prover:



1. Construct constraint polynomials  for 

 

2. Aggregate  into one polynomial 

 

3. Construct , and compute 

 

4. Construct accumulation polynomial  satisfying

 

4. Construct constraint polynomials  satisfying

 

5. Aggregate  and  into one polynomial  satisfying

 

6. Compute the Quotient polynomial  satisfying

 

7. Sample , compute , , and send  and

 

Round 3.  

Verifier: Send random evaluation point 

Prover:

1. Compute the values of  at :

 

Here the Prover can quickly compute . From the formula of , we have

 



Therefore, the value of  can be calculated from , and

 

Thus, we can obtain an  algorithm to compute , and it doesn't involve division operations. The
computation process is: .

2. Define the evaluation Domain , which includes  elements:

 

3. Compute and send the values of  on 

 

4. Compute and send 

5. Compute the Linearized Polynomial 

 

Obviously, , so this computed value doesn't need to be sent to the Verifier, and  can be
constructed by the Verifier themselves.

6. Construct polynomial , which is the interpolation polynomial of the following vector on 

 



 

The Prover can use the pre-computed Barycentric Weights  on  to quickly compute ,

 

Here  are pre-computed values:

 

7. Because , there exists a Quotient polynomial  satisfying

 

8. Compute the commitment of , , and simultaneously sample a random number  as
the Blinding Factor for the commitment:

 

 Error: Extra close brace or missing open brace

9. Construct the vanishing polynomial  on 

 

10. Construct Quotient polynomial :

 

11. Compute the commitment of ,  and . Since  doesn't contain any private information,
there's no need to add a Blinding Factor:

 

12. Construct Quotient polynomial  to prove the value of  at :

 

13. Compute the commitment of , , and simultaneously sample a random number  as
the Blinding Factor for the commitment:

 

 

14. Send 

Round 4.  



1. The Verifier sends a second random challenge point 

2. The Prover constructs a third Quotient polynomial 

 

3. The Prover computes and sends the commitment of , 

 

Proof Representation  

, 

 ，

Verification Process  

1. The Verifier computes  and 

 

 

2. The Verifier computes  using pre-computed Barycentric Weights 

 

3. The Verifier computes 

 

 

 

4. The Verifier computes , which can be calculated using the recursive method
mentioned earlier.

5. The Verifier computes the commitment of the linearization polynomial 

 



6. The Verifier generates a random number  to merge the following Pairing verifications:

 

The merged verification only requires two Pairing operations:

 

 

3. Optimized Performance Analysis  
Proof size: 

Verifier: 

References  
[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. "Efficient polynomial commitment
schemes for multiple points and polynomials". Cryptology {ePrint} Archive, Paper 2020/081. https://epr
int.iacr.org/2020/081.

[KZG10] Kate, Aniket, Gregory M. Zaverucha, and Ian Goldberg. "Constant-size commitments to
polynomials and their applications." Advances in Cryptology-ASIACRYPT 2010: 16th International
Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings 16. Springer Berlin Heidelberg, 2010.

[KT23] Kohrita, Tohru, and Patrick Towa. "Zeromorph: Zero-knowledge multilinear-evaluation proofs
from homomorphic univariate commitments." Cryptology ePrint Archive (2023). https://eprint.iacr.org/
2023/917

https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2023/917


[PST13] Papamanthou, Charalampos, Elaine Shi, and Roberto Tamassia. "Signatures of correct
computation." Theory of Cryptography Conference. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013. https://eprint.iacr.org/2011/587

[ZGKPP17] "A Zero-Knowledge Version of vSQL." Cryptology ePrint Archive (2023). https://eprint.iacr.or
g/2017/1146

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
"Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation." https://eprint.iacr.org/201
9/317

[CHMMVW19] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas
Ward. "Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS." https://eprint.iacr.org/201
9/1047

https://eprint.iacr.org/2011/587
https://eprint.iacr.org/2017/1146
https://eprint.iacr.org/2019/317
https://eprint.iacr.org/2019/1047

	Missing Protocol PH23-PCS (Part 3)
	1. How to Support ZK
	Hiding KZG10 
	ZK for Sum Proof
	Round 1
	Round 2
	Round 3
	Round 4
	Proof 
	Verification


	2. ZK-PH23-KZG10 Protocol (Optimized Version)
	Precomputation 
	Commit Computation Process
	Evaluation Proof Protocol
	Common inputs
	Round 1.
	Round 2.
	Round 3.
	Round 4.

	Proof Representation
	Verification Process

	3. Optimized Performance Analysis
	References


