
Missing Protocol PH23-PCS (Part 2)
This article provides the complete optimized protocol for PH23-KZG10.

1. Protocol Framework and Optimization
First, let's review the simple process of the Evaluation Argument in the PH23+KZG10 protocol, and then we'll
look at areas for optimization.

P: Send commitment of V: Send random number to aggregate constraint equations for multiple
polynomials P: Calculate the set of public polynomials P: Calculate the aggregated constraint
polynomial

P: Calculate commitment of quotient polynomial , commitment of

V: Send random evaluation point

P: Calculate , , and , ; Send
KZG10 Evaluation Arguments for the above polynomial evaluations

V: Verify all KZG10 Evaluation Arguments, then verify the following equation:

Optimization of Multi-point Evaluation Proof for

In the proof, the Prover needs to prove the Evaluation of polynomial at points, namely

Using the technique from the [BDFG20] paper, if a polynomial has Evaluation
at points , define as the interpolation polynomial of on , i.e.,

, and

Then satisfies the following equation:

This equation is easy to verify because when , the left side of the equation equals zero, so
 can be divided by . For all , can be divided by

,

In this way, the Prover only needs to prove to the Verifier that there exists such that
, then the Evaluation of on equals . This equation can be verified

by the Verifier providing a random challenge point , where and can be calculated by the
Verifier, and and can be proven through KZG10's Evaluation Argument.

Optimization of Polynomial Calculation

The Prover can construct polynomial , which is the interpolation polynomial of the following vector on
. The advantage of doing this is to allow the Prover to prove the Evaluation of at multiple different

points at once, denoted as :

We introduce satisfying , defined as

Then the Evaluation Domain of can be expressed as ,

Its Vanishing polynomial is defined as follows:

The Lagrange polynomial on can be defined as follows:

where are the Bary-Centric Weights on , defined as

Here are the Bary-Centric Weights on , and their definition is only related to , independent of .
Therefore, we can precompute and then use to calculate :

The above equation can be further optimized by dividing the right side by a constant polynomial

We can get:

Expanding and , we can get:

Canceling out in both numerator and denominator, we can get

Expanding the definition of and canceling out in both numerator and denominator, we can get

The Prover can use the precomputed Bary-Centric Weights on to quickly calculate , if is
fixed. Nevertheless, the computational complexity of is still . However, considering that

, the computational complexity of is logarithmic.

The definition of the precomputed is

Moreover, the Verifier needs to calculate the value of at a certain challenge point, such as .
The Verifier can use the above equation to calculate based on provided by the Prover with a time
complexity of .

2. PH23+KZG10 Protocol (Optimized Version)
For the KZG10 protocol, because its Commitment has additive homomorphism.

Precomputation

1. Precompute and

2. Precompute Bary-Centric Weights on . This can accelerate

3. Precompute KZG10 SRS of Lagrange Basis

Common inputs

1. : the (uni-variate) commitment of

2. : evaluation point

3. : computation value of MLE polynomial at

Commit Calculation Process

1. Prover constructs univariate polynomial such that its Evaluation form equals

, where , which is the value of on the Boolean Hypercube
.

2. Prover calculates commitment of and sends

where have been obtained in
the precomputation process.

Evaluation Proof Protocol

Recall the constraint of polynomial computation to be proved:

Here is a public challenge point.

Round 1.

Prover:

1. Calculate vector , where each element

2. Construct polynomial , whose computation result on is exactly .

3. Calculate commitment of and send

Round 2.

Verifier: Send challenge number

Prover:

1. Construct constraint polynomials about

2. Aggregate into one polynomial

3. Construct accumulation polynomial , satisfying

4. Construct constraint polynomials , satisfying

5. Aggregate and into one polynomial , satisfying

6. Calculate Quotient polynomial , satisfying

7. Calculate , , and send and

Round 3.

Verifier: Send random evaluation point

Prover:

1. Calculate the values of at :

Here the Prover can efficiently calculate . From the formula of , we get

Therefore, the value of can be calculated from , and

Thus, we can get an algorithm to calculate , and it doesn't contain division operations. The
calculation process is: .

2. Define evaluation Domain , containing elements:

3. Calculate and send the values of on

4. Calculate and send

5. Calculate Linearized Polynomial

Obviously, , so this computation value doesn't need to be sent to the Verifier, and can be
constructed by the Verifier themselves.

6. Construct polynomial , which is the interpolation polynomial of the following vector on

The Prover can use the precomputed Bary-Centric Weights on to quickly calculate ,

Here are precomputed values:

7. Because , there exists a Quotient polynomial satisfying

8. Construct vanishing polynomial on

9. Construct Quotient polynomial :

10. Construct Quotient polynomial

11. Send

Round 4.

1. Verifier sends the second random challenge point

2. Prover constructs the third Quotient polynomial

3. Prover calculates and sends

Proof

,

 ，

Verification Process

1. Verifier calculates using precomputed Barycentric Weights

2. Verifier calculates

3. Verifier calculates , which can be calculated using the recursive method mentioned
earlier.

4. Verifier calculates the commitment of the linearized polynomial

5. Verifier generates a random number to merge the following Pairing verifications:

After merging, the verification only needs two Pairing operations.

3. Optimized Performance Analysis
Proof size:

Prover's cost

Commit phase: +

Evaluation phase: +

Verifier's cost:

References

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. "Efficient polynomial commitment
schemes for multiple points and polynomials". Cryptology {ePrint} Archive, Paper 2020/081. https://epr
int.iacr.org/2020/081.

https://eprint.iacr.org/2020/081

	Missing Protocol PH23-PCS (Part 2)
	1. Protocol Framework and Optimization
	Optimization of Multi-point Evaluation Proof for c^*(X)
	Optimization of c^*(X) Polynomial Calculation

	2. PH23+KZG10 Protocol (Optimized Version)
	Precomputation
	Common inputs
	Commit Calculation Process
	Evaluation Proof Protocol
	Round 1.
	Round 2.
	Round 3.
	Round 4.

	Proof
	Verification Process

	3. Optimized Performance Analysis
	References

