Missing Protocol PH23-PCS (Part 2)

This article provides the complete optimized protocol for PH23-KZG10.

1. Protocol Framework and Optimization

First, let's review the simple process of the Evaluation Argument in the PH23+KZG10 protocol, and then we'll
look at areas for optimization.

P: Send commitment C, of ¢(X) V: Send random number o to aggregate constraint equations for multiple
polynomials P: Calculate the set of public polynomials {s;(X)} P: Calculate the aggregated constraint
polynomial h(X)

h(X) = G(c(X), 50(X), 51(X), - - -, sn_1(X), 2(X), 2(w ' X), X) (1)
P: Calculate commitment C} of quotient polynomial ¢(X), commitment C, of z(X)

h(X)

Hx) = 5 @

V: Send random evaluation point ¢

P: Calculate ¢(¢ - w), ¢(C - w?), e(¢ - wh), ..., e(C-w?), e(¢), and 2(C), 2(w ™ - ¢), t(¢), a(¢); Send

KZG10 Evaluation Arguments for the above polynomial evaluations

V: Verify all KZG10 Evaluation Arguments, then verify the following equation:

h(O) = 40) - oa(0) Q
Optimization of Multi-point Evaluation Proof for c*(X)

In the proof, the Prover needs to prove the Evaluation of polynomial ¢(X) atm + 1 points, namely

n—1
c(w-), c(w?-), c(w - ¢)y..., e -¢),c(d) (4)
Using the technique from the [BDFG20] paper, if a polynomial f(X) has Evaluation ¥ = (vg, U1, .. -, Um_1)
atm points D = (zg, 21, - - - , 2m—1), define f*(X) as the interpolation polynomial of ¥ on D, i.e.,

deg(f*(X)) =m —1,and f*(z;) = f(zi),Vi € [0,m)
wp() = [[(X - =) ®
i=0

Then f(X) satisfies the following equation:
F(X) = £1(X) = a(X) - (X = 20)(X —21) - (X — 21) (6)

This equation is easy to verify because when X = z;, the left side of the equation equals zero, so
f(X) — f*(X) can be divided by (X — z;). Foralli =0,1,...,m — 1, f(X) — f*(X) can be divided by
vp(X),

[y

op(X) = [[(X - =))

1=0

In this way, the Prover only needs to prove to the Verifier that there exists g(X) such that

f(X) — £*(X) = q(X) - vp(X), then the Evaluation of f(X) on D equals %. This equation can be verified
by the Verifier providing a random challenge point X = & where vp(§) and f*(&) can be calculated by the
Verifier, and f(&) and ¢(&) can be proven through KZG10's Evaluation Argument.

Optimization of ¢*(X) Polynomial Calculation

The Prover can construct polynomial ¢*(X), which is the interpolation polynomial of the following vector on
¢D. The advantage of doing this is to allow the Prover to prove the Evaluation of ¢(X) at multiple different
points at once, denoted as c*:

cw-C),e(w? - Q) e(w! - Q). ye(w®), e(0) (8)
We introduce D satisfying | D| = n + 1, defined as
D= (w, w? ', ..., W W = 1) (9)
Then the Evaluation Domain of ¢*(X) can be expressed as (D,
D'=D(=(w-¢w¢w ¢ oo, w2 ¢ Q) (10)
Its Vanishing polynomial vp/(X) is defined as follows:
vp(X) = (X - w()(X - * (X —w'Q) -+ (X — () (11)
The Lagrange polynomial on D’ can be defined as follows:
Lf’(X):dj-%, j=0,1,...,n (12)
where Jj are the Bary-Centric Weights on D', defined as

A 1 1 1 1
| P i Rl | b i R (13

27 42
I£] £ Y T

Here 10; are the Bary-Centric Weights on D, and their definition is only related to D, independent of (.
Therefore, we can precompute w; and then use w; to calculate c*(X):

*(X) =c5- Ly (X) +ci - LT (X) + -+ e - L (X) (14)
The above equation can be further optimized by dividing the right side by a constant polynomial g(X) = 1
g(X)=1-L¥(X)+1-LP(X) +--- +1-LP(X) (15)
We can get:

o) e LP(X) e LY (X) e 4 ep - LY (X)
X =75 - o) 1)

Expanding g(X) and LY’ (X), we can get:

C("; . JO . z2pi(X) + CI . d\l . zpr(X) 44 C;kl . dn . zpr(X)

* X—w¢ X—w¥(X-—w(

X) = 17
c(X) Lodg- 22X v 1.4, 22 . 41,4 .2 (17)

0" X—uC 1 X—w?(n X W

Canceling out 2pr (X) in both numerator and denominator, we can get
x 3 1 x 3 1 % A 1

ey = M T A e e dn e (18)

1'd0'X+wc+1'd1'X+w2¢+“'+1'dn‘ Xf(luzng

Expanding the definition of dAZ and canceling out CL" in both numerator and denominator, we can get

* . /IIJO * . —11)1 .« o o * . ’L;)n
Co' Xut TC Xowre T T 6 77

¢*(X) = (19)

Xii,g + X—clu?c +et X—w?'¢

The Prover can use the precomputed Bary-Centric Weights {w; } on D to quickly calculate ¢*(X), if nis
fixed. Nevertheless, the computational complexity of ¢*(X) is still O(n log?(n)). However, considering that
n = log(N), the computational complexity of ¢*(X) is logarithmic.

(20)

The definition of the precomputed ; is

w; =] ;21 (21)

27
A YT Y

Moreover, the Verifier needs to calculate the value of ¢*(X) at a certain challenge point, such as X = £.
The Verifier can use the above equation to calculate ¢*(§) based on c* provided by the Prover with a time
complexity of O(log V).

2. PH23+KZG10 Protocol (Optimized Version)

For the KZG10 protocol, because its Commitment has additive homomorphism.

Precomputation

1. Precompute so(X), ..., $p—1(X) and vy (X)

vg(X)=X" -1 (22)
vg(X) XNV-1
si(x) = %) X (29
sz‘(X) X2 -1
2. Precompute Bary-Centric Weights {u;} on D = (1,w,w?, ...,w?"). This can accelerate
R 1
itV b (24

I

3. Precompute KZG10 SRS of Lagrange Basis
Ao = [Lo(7)]1, A1 = [L1(7)]1, A2 = [La(T)]1, - -, An-1 = [Lona (7)1

Common inputs

1. Cy = [f(7)]1: the (uni-variate) commitment of f(Xo, X1, .., Xn_1)
2. 4= (ug,uq,...,u, 1): evaluation point

3. v= f(uo, U1, ..., Us_1): cOMputation value of MLE polynomial fat X=4a
Commit Calculation Process

1. Prover constructs univariate polynomial a(X) such that its Evaluation form equals

a = (ag,a1,...,an-1), where a; = f(bits(7)), which is the value of f on the Boolean Hypercube

{0,1}".
CL(X) =agp- LO(X) + a7 - Ll(X) +as - Lz(X) +---+an-_1- LNfl(X) (25)
2. Prover calculates commitment C, of f(X) and sends C,
Co=ao-Ag+ar-Ai+as-As+-- +ay_1-Ay_1 = [f(T)]s (26)

where Ag = [Lo(7)]1, A1 = [L1(7)]1, A3 = [La(7)]1, .-, AN_1 = [Lan1(7)]1 have been obtained in
the precomputation process.

Evaluation Proof Protocol

Recall the constraint of polynomial computation to be proved:

Fluo,ur, ug, ..yt 1) = (27)
Here 4 = (ug, u1,ug, ..., Up_1) is a public challenge point.
Round 1.
Prover:

1. Calculate vector ¢ where each element ¢; = eq(bits(4),)

2. Construct polynomial ¢(X'), whose computation result on H is exactly ¢.

(X) = Y e Li(X) (28)
=0

3. Calculate commitment C. = [¢(7)]; of ¢(X) and send C.
C. = KZG10.Commit(c) = [¢(7)]1 (29)
Round 2.
Verifier: Send challenge number o < F,
Prover:

1. Construct constraint polynomials po(X), - - . , pn(X) about ¢

po(X) = 50(X) - (e(X) = (1 = uo)(1 = wr)... (1~ up 1))

pr(X) = sp-1(X) - (unfk ce(X) = (1= unp) - c(w - X)>, k=1...n

. Aggregate {p;(X)} into one polynomial p(X)

p(X) =po(X) + a-pi(X) + o pa(X) + -+ a" - pu(X)

. Construct accumulation polynomial z(X), satisfying
z(1) =ag-co
2(w;) — (Z 1) = a(w;) - e(w;), i=1,...,N—1
AW) = v

. Construct constraint polynomials ho(X), h1(X), he(X), satisfying

ho(X) = Lo(X) - (2(X) — co - a(X))
ha(X) = (X —1) - ((X) — 2(w " X) — a(X) - (X))
hz(X) = LNfl(X) . (Z(X) — ’U)

. Aggregate p(X) and ho(X), h1(X), ho(X) into one polynomial h(X), satisfying
h(X) = p(X) +a"™ - ho(X) + "2 - hy(X) + a3 - hy(X)
. Calculate Quotient polynomial t(X), satisfying

A(X) = (X) - vy (X)

. Calculate C; = [t(7)]1, C, = [2(7)]1, and send C} and C,

O, = KZG10.Commit(t(X)) = [t(T)]x
C, = KZG10.Commit(2(X)) = [2(7)]:

Round 3.
Verifier: Send random evaluation point ¢ <—¢ I,
Prover:

1. Calculate the values of s;(X) at (:

50(€),51(€),---,8n-1(C)

Here the Prover can efficiently calculate s;(¢). From the formula of s;(X), we get

¢V -1
SZ(C) = C2i 1
IR (SR
(€ =1)(¢* +1)
¢V -1 i
- 1 -(¢* +1)
=s5i11(¢) - (¢* + 1)

(32)

(33)

(34)

(35)

(36)

(38)

Therefore, the value of s;(¢) can be calculated from s;.1(¢), and
¢V -1
Czn—l o 1

Thus, we can get an O(n) algorithm to calculate s;(¢), and it doesn't contain division operations. The
calculation process is: 8,-1(¢) = 8p—2(¢) = -+ — s0(Q).

sn1(0) = =¢¥ 41 (39)

2. Define evaluation Domain D', containing n + 1 elements:

= D¢ = {¢wéw,wie, W () (40)
3. Calculate and send the values of ¢(X) on D'
c(0), (¢ w), e(C-w?),e(C-wh), ... e(¢-w?) (41)

4. Calculate and send z(w™? - ¢)

5. Calculate Linearized Polynomial I+ (X)

1(X) =(50(0) - (€() — o)
)

+a-50(C) (un-1-¢(€) — (1= un-1) - c(w® Q)
+a? 51(¢) (un-2 - ¢(C) — (1 — up2) - c(w? -¢))
+a™ s, 9(Q) - (w1 e(€) — (1 —uy) - e(w” - Q)
F o™ 80a(O) - (up - Q) — (1 up) - e~) 42)
+ ™ (L) - (2(X) = co - a(X))
PC=1) - (2X) — 2wt O) —e(0) - a(X))
+ ™3 Ly 4(¢) - (2(X) - v)

—on() - 4(X))

Obviously, I¢({) = 0, so this computation value doesn't need to be sent to the Verifier, and [I(7)]; can be
constructed by the Verifier themselves.

6. Construct polynomial ¢*(X), which is the interpolation polynomial of the following vector on D¢

— n—1
¢ = (elw-) efw? -) efw - 0)y oy ew? - 0),(0)) (43)
The Prover can use the precomputed Bary-Centric Weights {w; } on D to quickly calculate ¢*(X),
CS.X(,.) +cl ;+.+c; _ﬁ)"yl
o' (X) = ‘ < e (44)

Wy
¢+ Xl Tt e

Here 1 ; are precomputed values:

;= [[——— (45)

20,2
A YT Y

7. Because [¢({) = 0, there exists a Quotient polynomial g¢(X) satisfying

8. Construct vanishing polynomial ZDc(X) on D¢

2p(X) = (X — (w) -+ (X — W) (X~ ()

9. Construct Quotient polynomial g.(X):

(e(X) — " (X))

ge(X) =

10. Construct Quotient polynomial g,,¢(X)

(X = (X = wO)(X = w?() -+ (X — w ()

AX) 2w Q)

qu¢(X) =

X —

wl-¢

11. Send (Qc = [qe(7)]1, Q¢ = [q¢(7)]1, Que = [QwC(T)]l’)

Round 4.

1. Verifier sends the second random challenge point £ <—¢ I,

2. Prover constructs the third Quotient polynomial g¢(X)

_ c(X) —c* (&) — zp,(§) - q.(X)

ge(X)

3. Prover calculates and sends Q¢

Qg = KZGlO.Commit(qg(X)) = [q§(7')]1

Proof

7@1,(71+1)F

Teval = (z(w_1 0),c(0), e(w-0),c(w?-¢),c(w-0),...,cw”

X—¢

Cca Cta Cz7 Qc7 QC7 Q£7 Qw()

Verification Process

1. Verifier calculates ¢*(§) using precomputed Barycentric Weights {w; }

_ dici giu

c*(§)

2. Verifier calculates v (¢), Lo(¢), Ln-1(¢)

2.

i
Z;

w;

E—x;

-1

C)a

(46)

(47)

(48)

(52)

(53)

(54)

(55)

w1 zr(Q)
N (—wN1

Ly-1(¢) =

(56)

3. Verifier calculates s¢(¢), . - ., Sn—1(¢), which can be calculated using the recursive method mentioned

earlier.

4, Verifier calculates the commitment of the linearized polynomial Cj

Cr = ((e(¢) = co)so(¢)

+a (U1 e(Q) = (L=un1) @™) - 50(0)
+a” - (g e(Q) = (L= un) - (™ Q) - 51(Q)
+ oo

+a e (ur - e(€) — (1 —wi) - e(w” - Q) - su-2(C)
+a” - (ug - e(¢) — (L —up) - c(w-()) - sa-1(C)
+amtt Lo(¢) - (C: —co - Ca)

+a"? - ((=1)- (C.— 2w -) —c({) - Cu)
+a™? - Ly_1(¢) - (C; — v)

~va(0)- C)

5. Verifier generates a random number 7 to merge the following Pairing verifications:

2

2

e(Cr+ ¢ Q¢ [1]2) = e(Qc, [T]2)
e(C — C*(&) — 2p,(€) - Qc + £ Q¢, [1]2) = e(Q¢, [1]2)
e(Ca+ ¢ Que — w - €) - [1]1, [1]2) = e(Quc, [7]2)
After merging, the verification only needs two Pairing operations.
P=(C+¢Q)
1+ (€= C" = 2p(9) - Qe+ ¢ Q)
17 (Cot ¢ Que = #(w™ - Q) [th)

e(P, [1]2) - e<Q< +7- Qe+ 7" Que, [T]z)

3. Optimized Performance Analysis

Proofsize:7 Gy + (n+ 1) F
Prover's cost

e Commit phase: O(Nlog N) F + G,

e Evaluation phase: O(Nlog N) F +7 G,
Verifier'scostt 4 F + O(n) F+3 Gy +2 P

References

(57)

(58)

(59)

(60)

e [BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. "Efficient polynomial commitment
schemes for multiple points and polynomials". Cryptology {ePrint} Archive, Paper 2020/081. https://epr
int.iacr.org/2020/081.

https://eprint.iacr.org/2020/081

	Missing Protocol PH23-PCS (Part 2)
	1. Protocol Framework and Optimization
	Optimization of Multi-point Evaluation Proof for c^*(X)
	Optimization of c^*(X) Polynomial Calculation

	2. PH23+KZG10 Protocol (Optimized Version)
	Precomputation
	Common inputs
	Commit Calculation Process
	Evaluation Proof Protocol
	Round 1.
	Round 2.
	Round 3.
	Round 4.

	Proof
	Verification Process

	3. Optimized Performance Analysis
	References

