
Missing Protocol PH23-PCS (Part 2)  
This article provides the complete optimized protocol for PH23-KZG10.

1. Protocol Framework and Optimization  
First, let's review the simple process of the Evaluation Argument in the PH23+KZG10 protocol, and then we'll
look at areas for optimization.

P: Send commitment  of  V: Send random number  to aggregate constraint equations for multiple
polynomials P: Calculate the set of public polynomials  P: Calculate the aggregated constraint
polynomial 

 

P: Calculate commitment  of quotient polynomial , commitment  of 

 

V: Send random evaluation point 

P: Calculate , , and , ; Send
KZG10 Evaluation Arguments for the above polynomial evaluations

V: Verify all KZG10 Evaluation Arguments, then verify the following equation:

 

Optimization of Multi-point Evaluation Proof for  

In the proof, the Prover needs to prove the Evaluation of polynomial  at  points, namely

 

Using the technique from the [BDFG20] paper, if a polynomial  has Evaluation 
at  points , define  as the interpolation polynomial of  on , i.e.,

, and 

 

Then  satisfies the following equation:

 

This equation is easy to verify because when , the left side of the equation equals zero, so
 can be divided by . For all ,  can be divided by

,

 



In this way, the Prover only needs to prove to the Verifier that there exists  such that
, then the Evaluation of  on  equals . This equation can be verified

by the Verifier providing a random challenge point , where  and  can be calculated by the
Verifier, and  and  can be proven through KZG10's Evaluation Argument.

Optimization of  Polynomial Calculation  

The Prover can construct polynomial , which is the interpolation polynomial of the following vector on
. The advantage of doing this is to allow the Prover to prove the Evaluation of  at multiple different

points at once, denoted as :

 

We introduce  satisfying , defined as

 

Then the Evaluation Domain of  can be expressed as ,

 

Its Vanishing polynomial  is defined as follows:

 

The Lagrange polynomial on  can be defined as follows:

 

where  are the Bary-Centric Weights on , defined as

 

Here  are the Bary-Centric Weights on , and their definition is only related to , independent of .
Therefore, we can precompute  and then use  to calculate :

 

The above equation can be further optimized by dividing the right side by a constant polynomial 

 

We can get:

 

Expanding  and , we can get:



 

Canceling out  in both numerator and denominator, we can get

 

Expanding the definition of  and canceling out  in both numerator and denominator, we can get

 

The Prover can use the precomputed Bary-Centric Weights  on  to quickly calculate , if  is
fixed. Nevertheless, the computational complexity of  is still . However, considering that

, the computational complexity of  is logarithmic.

 

The definition of the precomputed  is

 

Moreover, the Verifier needs to calculate the value of  at a certain challenge point, such as .
The Verifier can use the above equation to calculate  based on  provided by the Prover with a time
complexity of .

2. PH23+KZG10 Protocol (Optimized Version)  
For the KZG10 protocol, because its Commitment has additive homomorphism.

Precomputation  

1. Precompute  and 

 

 

2. Precompute Bary-Centric Weights  on . This can accelerate

 

3. Precompute KZG10 SRS of Lagrange Basis



Common inputs  

1. : the (uni-variate) commitment of 

2. : evaluation point

3. : computation value of MLE polynomial  at 

Commit Calculation Process  

1. Prover constructs univariate polynomial  such that its Evaluation form equals

, where , which is the value of  on the Boolean Hypercube
.

 

2. Prover calculates commitment  of  and sends 

 

where  have been obtained in
the precomputation process.

Evaluation Proof Protocol  

Recall the constraint of polynomial computation to be proved:

 

Here  is a public challenge point.

Round 1.  

Prover:

1. Calculate vector , where each element 

2. Construct polynomial , whose computation result on  is exactly .

 

3. Calculate commitment  of  and send 

 

Round 2.  

Verifier: Send challenge number 

Prover:

1. Construct constraint polynomials  about 

 



2. Aggregate  into one polynomial 

 

3. Construct accumulation polynomial , satisfying

 

4. Construct constraint polynomials , satisfying

 

5. Aggregate  and  into one polynomial , satisfying

 

6. Calculate Quotient polynomial , satisfying

 

7. Calculate , , and send  and 

 

Round 3.  

Verifier: Send random evaluation point 

Prover:

1. Calculate the values of  at :

 

Here the Prover can efficiently calculate . From the formula of , we get

 



Therefore, the value of  can be calculated from , and

 

Thus, we can get an  algorithm to calculate , and it doesn't contain division operations. The
calculation process is: .

2. Define evaluation Domain , containing  elements:

 

3. Calculate and send the values of  on 

 

4. Calculate and send 

5. Calculate Linearized Polynomial 

 

Obviously, , so this computation value doesn't need to be sent to the Verifier, and  can be
constructed by the Verifier themselves.

6. Construct polynomial , which is the interpolation polynomial of the following vector on 

 

The Prover can use the precomputed Bary-Centric Weights  on  to quickly calculate ,

 

Here  are precomputed values:

 

7. Because , there exists a Quotient polynomial  satisfying



 

8. Construct vanishing polynomial  on 

 

9. Construct Quotient polynomial :

 

10. Construct Quotient polynomial 

 

11. Send 

Round 4.  

1. Verifier sends the second random challenge point 

2. Prover constructs the third Quotient polynomial 

 

3. Prover calculates and sends 

 

Proof  

, 

 ，

Verification Process  

1. Verifier calculates  using precomputed Barycentric Weights 

 

2. Verifier calculates 

 

 

 



3. Verifier calculates , which can be calculated using the recursive method mentioned
earlier.

4. Verifier calculates the commitment of the linearized polynomial 

 

5. Verifier generates a random number  to merge the following Pairing verifications:

 

After merging, the verification only needs two Pairing operations.

 

 

3. Optimized Performance Analysis  
Proof size: 

Prover's cost

Commit phase:  + 

Evaluation phase:  + 

Verifier's cost: 
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