
The Missing Protocol PH23-PCS (Part 1)
In the paper "Improving logarithmic derivative lookups using GKR" ([PH23]), the authors presented an idea
to convert MLE into a Univariate Polynomial. Although the paper didn't provide a complete protocol
description, this protocol demonstrates advantages in certain aspects, such as supporting Shift Arguments
with arbitrary offsets.

The main advantage of this scheme is its ability to support Shift Arguments with arbitrary offsets (see
Appendix A.2 of the paper). Additionally, when interfacing with KZG10, the proof of this PCS Adaptor only
includes a constant number of elements and a logarithmic number of elements. This is superior to
Gemini-PCS and Zeromorph-PCS (KT23), which require a logarithmic number of elements.

The approach of this protocol is similar to Virgo-PCS in that they both view MLE polynomial operations as a
summation and use the Univariate Sumcheck protocol to complete the "sum proof". However, PH23-PCS
also requires the Prover to prove the value of the MLE Lagrange Polynomial at the evaluation point, thus
reducing the burden on the Verifier; while Virgo-PCS uses the GKR protocol to achieve this. Another
difference is that Virgo-PCS requires the MLE polynomial to be represented in Coefficient Form, so Virgo-
PCS uses the GKR circuit to prove the correctness of the computation of converting the MLE polynomial
from Evaluation Form to Coefficient Form.

This article series completes the description of PH23-PCS in the [PH23] paper and provides a simplified
protocol for PH23-KZG10 to help everyone understand the basic idea of this protocol.

This article first introduces the basic principles of PH23-PCS-Adaptor in detail, and then provides a simple
protocol implementation of PH23-KZG10.

1. Principle Overview
Before explaining how the Prover proves the Evaluation of an MLE polynomial , let's recall the
definition of an MLE polynomial:

Here . When calculating the value of at , we need to calculate
. To facilitate explanation, we introduce a new vector , where each element =

.

If and , then all values of can be enumerated:

It can be seen that the elements of are defined with certain patterns. For example, is the product of
values, and these values also have certain patterns. Here represents binary 0, while represents
binary 1. For instance, is the product of three numbers, , which represents (111) , exactly the
binary representation of 7. Another example is , which is the product of three numbers, ,
representing (101) , which is the binary representation of 5.

The key idea of PH23 is whether the Prover can first commit to the vector , and then prove that each
element of is correctly defined according to the binary pattern above. If possible, the Prover can then

prove an Inner Product relationship, i.e., prove , which is equivalent to proving .

Therefore, the proof protocol of PH23 is divided into two parts:

1. Prove the Well-Formedness of vector .

2. Prove .

2. Well-Formedness of
Continuing with the example of where ,

We observe that

Thus, if is correct, we can prove that is correct by proving the following constraint equation:

Next, we observe

From this, we can infer that if is correct, then the following two constraint equations ensure that and
 are correct:

Next, we can prove that are correct because they can be derived from , which
have been proven correct in the previous step:

The final conclusion is that through the above constraint equations, we can prove that
 are all correct, assuming is known to be correct. The inference relationship

between the elements of vector is shown in the following diagram:

Assume is a multiplicative subgroup of size 8 in the finite field , ,
where is an 8th root of unity. And let denote the Lagrange Basis polynomials on .

Then we can introduce as the polynomial encoding of according to the Lagrange Basis:

It's easy to verify that , where .

Furthermore, the four constraint equations proving can be combined into one polynomial
constraint equation:

We can substitute , and the above constraint equation corresponds to:

By substituting respectively, we can obtain the constraint equations proving the
correctness of .

The polynomial looks like a Selector polynomial, filtering out
values that don't satisfy the condition.

Using this method, we can use polynomial constraints to prove the Well-Formedness of .

For the example of , we need to introduce 3 Selector polynomials ,

where and are the Vanishing polynomials of Domain and respectively. And is a
subgroup of , satisfying the following Group Tower relationship:

They are defined as follows:

Naturally, the representations of Selector polynomials are as follows:

Polynomial Constraint Equations

The constraint equation ensuring the correctness of can be expressed as the following polynomial
constraint:

The constraint equation ensuring the correctness of can be expressed as the following polynomial
constraint:

The following are the constraint equations ensuring the correctness of :

Finally, the constraint equation ensuring the correctness of :

3. Proving Inner Product
The second part of the proof is to prove . Assuming is the encoding of vector , i.e.,

, then is committed as , along with the commitment of , , we can use
the Univariate Sumcheck protocol to prove the inner product.

Univariate Sumcheck

Let's first look at a theorem (Remark 5.6 in [BCRSVW19], Sec.3 in [RZ21], Sec.5.1 in [CHMMVW19]): For any
, a multiplicative subgroup , can be decomposed as:

Here is the sum of over , i.e.,

Therefore, we can use this theorem to prove the inner product of two vectors. If can be
expressed as the following equation,

then .

The Prover can send commitments of and , then the Verifier challenges with , the Prover sends
the evaluations of related polynomials at , and then the Verifier verifies if the above equation holds:

The Prover and Verifier then use a univariate polynomial commitment scheme, such as KZG10, to prove the
correctness of .

At the same time, the KZG10 protocol can also prove the Degree Bound of , i.e., .

Grand Sum

In fact, we can also use the Grand Sum protocol to prove the inner product of two vectors.

One problem with Univariate Sumcheck is that it includes a Degree Bound constraint, i.e.,
. This requires additional processing for the underlying KZG10 protocol, which

increases the complexity of the protocol and introduces too many Pairing operations. The Grand Sum
protocol avoids introducing Degree Bound constraints.

The idea of the Grand Sum protocol comes from the Grand Product Argument in Plonk [GWC19], and this
protocol was first proposed by [BG12].

Suppose a polynomial encodes the values of vector , then we construct an auxiliary vector ,
satisfying:

Or expressed more concisely with a recursive formula:

We can encode using polynomial , i.e.,

where are the Lagrange Basis polynomials for defined above.

Then we can use the following three polynomial constraints to represent the recursive formula of , thus
ensuring the correctness of :

Note that we use to represent . And the third polynomial constraint ensures that the sum
of the result equals the final polynomial operation result .

Using a Univariate PCS protocol, such as KZG10 or FRI, we can prove the correctness of these polynomial
constraint equations.

4. Interfacing with KZG10
To prove the polynomial constraints listed above, we can implement a proof of these polynomial equations
based on the KZG10 protocol. In summary, we have two types of polynomial constraints. The first type is
constraints about the correctness of , and the second type is constraints about the correctness of

.

The second type of polynomials are

We can use an provided by the Verifier to aggregate these polynomials into a large polynomial, denoted
as :

If and are correct, then the values of at are all zero, and then we know that is zero
everywhere on , so it must contain the Vanishing polynomial of as a factor, i.e., there exists a
Quotient polynomial , such that

Then the Verifier challenges a random point , requiring the Prover to calculate and send the values of
, and at , as well as the value of at , and the values of at

. And provide KZG10 Evaluation proofs for these evaluations.

The Verifier first verifies the correctness of , then the Verifier calculates the values of the following
public polynomials at :

And

Then calculate the following values using all the polynomial operation values included in :

Use to aggregate these polynomial evaluations to get :

Finally, check if the following equation holds:

where is the value of the Vanishing polynomial of at , calculated by the Verifier itself.

5. PH23+KZG10 Protocol Flow (Simplified Version)
In this article, we don't consider the performance of the protocol, but only show a simple and direct
implementation of PH23+KZG10. The protocol is mainly divided into three parts:

Commit of MLE polynomial

Proof process of MLE polynomial's Evaluation Argument

Verification process of MLE polynomial's Evaluation Argument

Commit

If we want to commit to an MLE polynomial with unknowns, , defined as follows:

Here represents the values of this MLE polynomial on the Boolean
HyperCube.

First, the Prover constructs a univariate polynomial, denoted as , such that its values on Domain are
exactly , and the size of is exactly . Moreover, is generally a multiplication-friendly subgroup, which
can be generated by an N-th Root of Unity (denoted as) as the generator:

Then is defined as follows:

Here represents the Lagrange polynomials based on , defined as follows:

Here is the Vanishing polynomial on , defined as follows:

Then the Prover calculates the coefficient form of , uses the SRS of KZG10 to calculate the
commitment of , denoted as

Here is the coefficient form of :

Evaluation Proof Protocol

The so-called Evaluation Argument refers to the Prover proving to the Verifier that an MLE polynomial
corresponding to a polynomial commitment with unknowns takes a value at a public point

:

Here, we also assume that the value of the polynomial at the public point is also a public value, denoted as
.

Common Input

1. : A univariate polynomial commitment for vector . Where

equals the values of MLE polynomial on the n-dimensional Boolean Hypercube,
which is also the values of on .

2. : The evaluation point of MLE polynomial

3. : The value of MLE polynomial at .

Round 1.

Prover:

1. Construct polynomial , where

2. Calculate the commitment of , , and send

Round 2.

Verifier: Send random number

Prover:

1. Construct Selector polynomials

2. Construct constraint polynomials for

3. Construct accumulation polynomial , satisfying

4. Construct constraint polynomials , satisfying

5. Construct aggregation polynomial :

6. Calculate Quotient polynomial , satisfying

7. Calculate polynomial commitments , , and send and

Round 3.

Verifier: Send random evaluation point

Prover:

1. Calculate the values of at :

2. Define a new Domain , containing elements:

Its coset is the set of evaluation points for that the Prover needs to calculate.

3. Calculate ,

4. Calculate ,

5. Send these polynomial values:

6. Send KZG10 evaluation proofs

Verification

The proof contains the following elements:

The Verifier first calculates , , .

The Verifier needs to verify the following equations to complete the verification process of the evaluation
proofs for polynomials , , , :

The Verifier uses the polynomial values at to verify the following constraint equation:

Here are defined as follows:

Summary
The PH23 PCS Adaptor maps the Evaluations of MLE polynomials to the Evaluations of a univariate
polynomial, and then uses "sum proof" to ensure the correctness of MLE polynomial operations.

We will optimize and improve this protocol in subsequent articles.

References
[PH23] Papini, Shahar, and Ulrich Haböck. "Improving logarithmic derivative lookups using GKR."
Cryptology ePrint Archive (2023). https://eprint.iacr.org/2023/1284

[KT23] Kohrita, Tohru, and Patrick Towa. "Zeromorph: Zero-knowledge multilinear-evaluation proofs
from homomorphic univariate commitments." Cryptology ePrint Archive (2023). https://eprint.iacr.org/
2023/917

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. "Transparent polynomial
delegation and its applications to zero knowledge proof." 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020. https://eprint.iacr.org/2019/1482

[KZG10] Kate, Aniket, Gregory M. Zaverucha, and Ian Goldberg. "Constant-size commitments to
polynomials and their applications." Advances in Cryptology-ASIACRYPT 2010: 16th International
Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings 16. Springer Berlin Heidelberg, 2010.

[CHMMVW19] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas
Ward. "Marlin: Preprocessing zkSNARKs with universal and updatable SRS." Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. Springer
International Publishing, 2020.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. "Aurora: Transparent succinct arguments for R1CS." Advances in Cryptology–
EUROCRYPT 2019: 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I 38. Springer
International Publishing, 2019.

[RZ21] Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and updatable SNARKs.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804,
Virtual Event, August 2021. Springer, Heidelberg.

https://eprint.iacr.org/2023/1284
https://eprint.iacr.org/2023/917
https://eprint.iacr.org/2019/1482

	The Missing Protocol PH23-PCS (Part 1)
	1. Principle Overview
	2. Well-Formedness of \vec{c}
	Polynomial Constraint Equations

	3. Proving Inner Product
	Univariate Sumcheck
	Grand Sum

	4. Interfacing with KZG10
	5. PH23+KZG10 Protocol Flow (Simplified Version)
	Commit
	Evaluation Proof Protocol
	Common Input
	Round 1.
	Round 2.
	Round 3.
	Verification

	Summary
	References

