
The Missing Protocol PH23-PCS (Part 1)  
In the paper "Improving logarithmic derivative lookups using GKR" ([PH23]), the authors presented an idea
to convert MLE into a Univariate Polynomial. Although the paper didn't provide a complete protocol
description, this protocol demonstrates advantages in certain aspects, such as supporting Shift Arguments
with arbitrary offsets.

The main advantage of this scheme is its ability to support Shift Arguments with arbitrary offsets (see
Appendix A.2 of the paper). Additionally, when interfacing with KZG10, the proof of this PCS Adaptor only
includes a constant number of  elements and a logarithmic number of  elements. This is superior to
Gemini-PCS and Zeromorph-PCS (KT23), which require a logarithmic number of  elements.

The approach of this protocol is similar to Virgo-PCS in that they both view MLE polynomial operations as a
summation and use the Univariate Sumcheck protocol to complete the "sum proof". However, PH23-PCS
also requires the Prover to prove the value of the MLE Lagrange Polynomial at the evaluation point, thus
reducing the burden on the Verifier; while Virgo-PCS uses the GKR protocol to achieve this. Another
difference is that Virgo-PCS requires the MLE polynomial to be represented in Coefficient Form, so Virgo-
PCS uses the GKR circuit to prove the correctness of the computation of converting the MLE polynomial
from Evaluation Form to Coefficient Form.

This article series completes the description of PH23-PCS in the [PH23] paper and provides a simplified
protocol for PH23-KZG10 to help everyone understand the basic idea of this protocol.

This article first introduces the basic principles of PH23-PCS-Adaptor in detail, and then provides a simple
protocol implementation of PH23-KZG10.

1. Principle Overview  
Before explaining how the Prover proves the Evaluation of an MLE polynomial , let's recall the
definition of an MLE polynomial:

 

Here . When calculating the value of  at , we need to calculate
. To facilitate explanation, we introduce a new vector , where each element  =

.

If  and , then all values of  can be enumerated:

 



It can be seen that the elements of  are defined with certain patterns. For example,  is the product of 
values, and these values also have certain patterns. Here  represents binary 0, while  represents
binary 1. For instance,  is the product of three numbers, , which represents (111) , exactly the
binary representation of 7. Another example is , which is the product of three numbers, ,
representing (101) , which is the binary representation of 5.

The key idea of PH23 is whether the Prover can first commit to the vector , and then prove that each
element of  is correctly defined according to the binary pattern above. If possible, the Prover can then

prove an Inner Product relationship, i.e., prove , which is equivalent to proving .

Therefore, the proof protocol of PH23 is divided into two parts:

1. Prove the Well-Formedness of vector .

2. Prove .

2. Well-Formedness of  
Continuing with the example of  where ,

 

We observe that

 

Thus, if  is correct, we can prove that  is correct by proving the following constraint equation:

 

Next, we observe

 

From this, we can infer that if  is correct, then the following two constraint equations ensure that  and
 are correct:

 

Next, we can prove that  are correct because they can be derived from , which
have been proven correct in the previous step:

 



The final conclusion is that through the above  constraint equations, we can prove that
 are all correct, assuming  is known to be correct. The inference relationship

between the elements of vector  is shown in the following diagram:

 

Assume  is a multiplicative subgroup of size 8 in the finite field , ,
where  is an 8th root of unity. And let  denote the Lagrange Basis polynomials on .

Then we can introduce  as the polynomial encoding of  according to the Lagrange Basis:

 

It's easy to verify that , where .

Furthermore, the four constraint equations proving  can be combined into one polynomial
constraint equation:

 

We can substitute , and the above constraint equation corresponds to:

 

By substituting  respectively, we can obtain the constraint equations proving the
correctness of .

The polynomial  looks like a Selector polynomial, filtering out 
values that don't satisfy the condition.

Using this method, we can use  polynomial constraints to prove the Well-Formedness of .

For the example of , we need to introduce 3 Selector polynomials ,

 

where  and  are the Vanishing polynomials of Domain  and  respectively. And  is a
subgroup of , satisfying the following Group Tower relationship:

 

They are defined as follows:

 



Naturally, the representations of Selector polynomials  are as follows:

 

Polynomial Constraint Equations  

The constraint equation ensuring the correctness of  can be expressed as the following polynomial
constraint:

 

The constraint equation ensuring the correctness of  can be expressed as the following polynomial
constraint:

 

The following are the constraint equations ensuring the correctness of :

 

Finally, the constraint equation ensuring the correctness of :

 

3. Proving Inner Product  
The second part of the proof is to prove . Assuming  is the encoding of vector , i.e.,

, then  is committed as , along with the commitment of , , we can use
the Univariate Sumcheck protocol to prove the inner product.

Univariate Sumcheck  

Let's first look at a theorem (Remark 5.6 in [BCRSVW19], Sec.3 in [RZ21], Sec.5.1 in [CHMMVW19]): For any
, a multiplicative subgroup ,  can be decomposed as:

 

Here  is the sum of  over , i.e.,

 

Therefore, we can use this theorem to prove the inner product of two vectors. If  can be
expressed as the following equation,

 



then .

The Prover can send commitments of  and , then the Verifier challenges with , the Prover sends
the evaluations of related polynomials at , and then the Verifier verifies if the above equation holds:

 

The Prover and Verifier then use a univariate polynomial commitment scheme, such as KZG10, to prove the
correctness of .

At the same time, the KZG10 protocol can also prove the Degree Bound of , i.e., .

Grand Sum  

In fact, we can also use the Grand Sum protocol to prove the inner product of two vectors.

One problem with Univariate Sumcheck is that it includes a Degree Bound constraint, i.e.,
. This requires additional processing for the underlying KZG10 protocol, which

increases the complexity of the protocol and introduces too many Pairing operations. The Grand Sum
protocol avoids introducing Degree Bound constraints.

The idea of the Grand Sum protocol comes from the Grand Product Argument in Plonk [GWC19], and this
protocol was first proposed by [BG12].

Suppose a polynomial  encodes the values of vector , then we construct an auxiliary vector ,
satisfying:

 

Or expressed more concisely with a recursive formula:

 

We can encode  using polynomial , i.e.,

 

where  are the Lagrange Basis polynomials for  defined above.

Then we can use the following three polynomial constraints to represent the recursive formula of , thus
ensuring the correctness of :

 



Note that we use  to represent . And the third polynomial constraint ensures that the sum
of the result equals the final polynomial operation result .

Using a Univariate PCS protocol, such as KZG10 or FRI, we can prove the correctness of these polynomial
constraint equations.

4. Interfacing with KZG10  
To prove the polynomial constraints listed above, we can implement a proof of these polynomial equations
based on the KZG10 protocol. In summary, we have two types of polynomial constraints. The first type is
constraints about the correctness of , and the second type is constraints about the correctness of

.

 

The second type of polynomials are

 

We can use an  provided by the Verifier to aggregate these polynomials into a large polynomial, denoted
as :

 

If  and  are correct, then the values of  at  are all zero, and then we know that  is zero
everywhere on , so it must contain the Vanishing polynomial  of  as a factor, i.e., there exists a
Quotient polynomial , such that

 

Then the Verifier challenges a random point , requiring the Prover to calculate and send the values of
,  and   at , as well as the value of  at , and the values of  at

. And provide KZG10 Evaluation proofs  for these evaluations.

 

The Verifier first verifies the correctness of , then the Verifier calculates the values of the following
public polynomials at :

 

And



 

Then calculate the following values using all the polynomial operation values included in :

 

Use  to aggregate these polynomial evaluations to get :

 

Finally, check if the following equation holds:

 

where  is the value of the Vanishing polynomial of  at , calculated by the Verifier itself.

5. PH23+KZG10 Protocol Flow (Simplified Version)  
In this article, we don't consider the performance of the protocol, but only show a simple and direct
implementation of PH23+KZG10. The protocol is mainly divided into three parts:

Commit of MLE polynomial

Proof process of MLE polynomial's Evaluation Argument

Verification process of MLE polynomial's Evaluation Argument

Commit  

If we want to commit to an MLE polynomial with  unknowns, , defined as follows:

 

Here  represents the values of this MLE polynomial on the  Boolean
HyperCube.

First, the Prover constructs a univariate polynomial, denoted as , such that its values on Domain  are
exactly , and the size of  is exactly . Moreover,  is generally a multiplication-friendly subgroup, which
can be generated by an N-th Root of Unity (denoted as ) as the generator:



 

Then  is defined as follows:

 

Here  represents the Lagrange polynomials based on , defined as follows:

 

Here  is the Vanishing polynomial on , defined as follows:

 

Then the Prover calculates the coefficient form of , uses the SRS of KZG10 to calculate the
commitment of , denoted as 

 

Here  is the coefficient form of :

 

Evaluation Proof Protocol  

The so-called Evaluation Argument refers to the Prover proving to the Verifier that an MLE polynomial 
corresponding to a polynomial commitment  with  unknowns takes a value at a public point

:

 

Here, we also assume that the value of the polynomial at the public point is also a public value, denoted as
.

Common Input  

1. : A univariate polynomial commitment for vector . Where 

equals the values of MLE polynomial  on the n-dimensional Boolean Hypercube,
which is also the values of  on .

2. : The evaluation point of MLE polynomial 

3. : The value of MLE polynomial  at .

Round 1.  

Prover:

1. Construct polynomial , where 

 

2. Calculate the commitment of , , and send 



 

Round 2.  

Verifier: Send random number 

Prover:

1. Construct Selector polynomials 

 

2. Construct constraint polynomials  for 

 

 

3. Construct accumulation polynomial , satisfying

 

4. Construct constraint polynomials , satisfying

 

5. Construct aggregation polynomial :

 

6. Calculate Quotient polynomial , satisfying

 

7. Calculate polynomial commitments , , and send  and 

Round 3.  

Verifier: Send random evaluation point 

Prover:

1. Calculate the values of  at :

 

2. Define a new Domain , containing  elements:

 



Its coset  is the set of evaluation points for  that the Prover needs to calculate.

 

3. Calculate , 

4. Calculate , 

5. Send these polynomial values:

 

6. Send KZG10 evaluation proofs

 

Verification  

The proof  contains the following elements:

 

The Verifier first calculates , , .

The Verifier needs to verify the following equations to complete the verification process of the evaluation
proofs for polynomials , , , :

 

The Verifier uses the polynomial values at  to verify the following constraint equation:

 

Here  are defined as follows:



 

Summary  
The PH23 PCS Adaptor maps the Evaluations of MLE polynomials to the Evaluations of a univariate
polynomial, and then uses "sum proof" to ensure the correctness of MLE polynomial operations.

We will optimize and improve this protocol in subsequent articles.
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