
Notes on Libra-PCS  
1. MLE Polynomials  
Of course, an MLE polynomial can also be represented in "coefficient form", which is expressed as follows:

 

For the example of a three-dimensional MLE polynomial shown above, we can write it as:

 

where  is the coefficient vector of the MLE polynomial. Note that because MLE polynomials belong to
multivariate polynomials, any representation needs to determine the ordering of terms in the polynomial in advance. In
this article and subsequent discussions, we will base on the Lexicographic Order.

For the "point-value form" representation of MLE polynomials, we can define it as:

 

where  is a set of Lagrange Polynomials for the n-dimensional Boolean HyperCube :

 

There exists an  conversion algorithm between the "point-value form" and "coefficient form" of MLE
polynomials, which we won't discuss in depth here.

2. Division of MLE Polynomials  
For a univariate polynomial , if the value of  at  is , then we have the following equation:

 

where  is the quotient polynomial of  divided by , and  is the remainder.

We can derive this equation simply. When we substitute  into the equation, we get . This shows that the
problem of polynomial evaluation is equivalent to finding the remainder of polynomial division. Then, we can subtract this
remainder from , and the resulting polynomial  can obviously be divided by , meaning
there exists a quotient polynomial, denoted as .

For a multivariate polynomial , the paper [PST13] provides a similar division relation equation:

 

If  is an MLE polynomial, it can be simplified to the following equation:

 



This is because in the MLE polynomial , the highest degree of each unknown  is 1. For
, after dividing by the factor , the remainder polynomial will no longer contain the

unknown . So when  is sequentially divided by factors from  to , the
number of unknowns in the resulting quotient polynomials and remainder polynomials will decrease successively, until we
finally get a constant quotient polynomial . Of course, after n divisions, a constant remainder polynomial will appear,
which is exactly the evaluation of the MLE polynomial at . This is known as Ruffini's rule [Ruffini].

Let's assume this final evaluation is , i.e.,

 

3. Construction of Libra-PCS  
Similar to the construction of KZG10, Libra-PCS also requires a structured SRS. It should be noted that the Libra paper is
based on the KOE security assumption, while the scheme introduced in this article is based on the AGM security
assumption, so the scheme's SRS has a smaller size and can also prove the correctness and Extractibility properties of the
scheme under the AGM assumption.

It is generated by a Trusted Setup:

 

With this SRS, we can calculate the commitment of an n-variable MLE polynomial . That is, use the
SRS as a basis for linear combination with its coefficient vector of length  to obtain an element on .

 

where  is the coefficient vector of . The commitment is calculated as
follows:

 

Here  is a random number used to hide the information of .

Then if the Prover wants to prove , they need to commit to the quotient polynomials
.

 

To ensure that the Verifier can verify these Commitments, and to allow each Commitment to have a Blinding Factor, we
need to modify the division equation of the MLE polynomial after adding these Blinding Factors:

 



Therefore, the Prover needs to calculate an additional Commitment, collecting all the Blinding Factors, which is the red
part on the right side of the equation above:

 

Here  is clearly also an element on .

So after the Prover sends  to the Verifier, the Verifier can verify through the following Pairing
equation:

 

4. Supporting MLE Evaluation Form  
In the Libra-PCS described above, when the Prover calculates the Commitment, they need to first obtain the "coefficient
form" of the MLE polynomial before calculating the Commitment. However, in many Sumcheck protocols, the Evaluation
Form of MLE is used, that is, the point-value form. In other words, the n-variable MLE polynomial is represented by its
evaluation values on the n-dimensional Boolean Hypercube:

 

If we need to convert the Evaluation form of the MLE polynomial to the Coefficient form, this conversion algorithm
requires  time complexity. So is it possible to directly support the Evaluation form of MLE?

The Evaluation form of MLE brings two difficult problems. The first is how to calculate a commitment for an Evaluation
Form based on SRS, and the second is how to calculate n divisions of the MLE polynomial to obtain n quotient polynomials

.

Let's look at the first problem: how to calculate the Commitment for the Evaluation Form. There are two ways to do this. A
more direct way is to produce the Commitment of the Multilinear Basis of the MLE polynomial directly when calculating
the SRS, rather than the Commitment of the Monomial Basis.

For example, suppose n=3, then we produce a new set of SRS parameters to calculate the Commitment of the Evaluation
Form of a three-variable MLE polynomial.

 

To simplify the notation, we use  to represent . Suppose we have a
polynomial :

 

So we calculate its Commitment as follows:

 

However, we need to realize that  is not enough, because the Multilinear Basis like  is related to the size of
the Domain. We should realize that if we want to commit to the Evaluation Form of a bivariate polynomial, we cannot use

 to calculate. Instead, we need to produce another set of SRS parameters for bivariate MLE polynomials, denoted
as 

 

Similarly, we also need a set of SRS parameters for univariate polynomials, denoted as :

 



Finally, for constant polynomials, we only need  as a Basis to calculate the commitment. We combine all these 
based on k-MLE together, denoted as :

 

Next, suppose we have obtained three quotient polynomials  of . Then we
calculate the corresponding Commitments through their Evaluation Form:

 

Next, let's consider the second difficult problem: how to calculate n divisions of the MLE polynomial to obtain n quotient
polynomials  in Evaluation Form. The familiar polynomial long division is only applicable to the Coefficient
Form of polynomials, while the Libra paper [XZZPS19] provides an  algorithm that supports division of MLE
polynomials in Evaluation Form.

Let's first consider a simple case, assuming a bivariate MLE polynomial  in Evaluation Form:

 

The first step is to calculate ,

We expand the Evaluation Form of  according to the degree of :

 

Then the quotient polynomial  is equal to:

 

We rearrange the terms of  and can get:

 

The above equation is exactly the Evaluation Form of , which is not difficult to calculate. We just need to subtract
the first half of the Evaluation vector of  from the second half to obtain the Evaluation vector of .

Next, let's look at the remainder polynomial after dividing , which is a univariate polynomial in
terms of , denoted as :

 

After reorganization, we see that the Evaluation vector of the remainder polynomial  is exactly the combination of
the first half and the second half of the Evaluation vector of , that is:

 

Then

 



Here the definition of the fold function  is:

 

Therefore, we can obtain a clear algorithm. Each time, split the Evaluation vector into two halves, subtract the lower half
from the higher half to get the Evaluation vector of the quotient polynomial; fold the high and low halves to get the
Evaluation vector of the remainder polynomial. Then continue recursively to get all the quotient polynomials. Below we
give the Python implementation of this algorithm:
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def decompose_by_div(evaluations, point) -> tuple[list, int]:
    e = evaluations.copy()
    k = log_2(len(e))
    quotients = []
    half = pow_2(k - 1)
    for i in range(k):
        q = [0] * half  # init quotient MLE (evalations)
        for j in range(half):
            q[j] = e[j + half] - e[j]  # compute quotient MLE
            e[j] = e[j] * (1 - point[k-i-1]) + e[j + half] * point[k-i-1]  # fold by point[k-i-1]
        quotients.insert(0, q)
        half >>= 1
    return quotients, e[0] # e[0] = f(point)
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