
Understanding Hiding KZG10
Hiding KZG10 is a variant of the KZG10 protocol that produces polynomial commitments with a random
blinding factor, thus possessing the property of Perfect Hiding. This means that even if an attacker has
unlimited computational power, they cannot reverse-engineer any information about the polynomial from
the commitment. While Hiding KZG10 is not common, it is an important component in constructing
zkSNARKs with Zero-knowledge properties or other secure protocols.

This article introduces two different Hiding KZG10 schemes. The first scheme is from [KT23], and its main
technique is a simplified version of multivariate polynomial commitment from [PST13], [ZGKPP17], and
[XZZPS19]. The second scheme is from [CHMMVW19], which is an improvement on the original KZG10
protocol paper [KZG10].

None-hiding KZG10
Let's first recall the basic KZG10 protocol. KZG10 is based on a pre-setup (Universal Trusted Setup) SRS:

Here, is a secret value that needs to be forgotten after the Setup phase, otherwise, any party knowing
could launch an attack. We use bracket notation to represent scalar multiplication (Scalar
Multiplication) on an elliptic curve group element, where is the generator of the group. The
SRS consists of group elements from and , which we call Base elements, as subsequent
commitments to polynomials are based on linear operations of these Base elements.

Since division operations on elliptic curve group elements are a difficult problem, if our computing power is
limited, we cannot calculate from . This can be seen as, once we multiply a value by a Base
element, is hidden.

KZG10 requires a pairing friendly curve, meaning there exists another elliptic curve group (with
generator), where each element is represented as , i.e., . And there exists a bilinear pairing
operation that satisfies the following bilinearity and non-degeneracy properties:

Now assume we have a univariate polynomial

Here, the Degree of the polynomial needs to satisfy . Then the commitment of the polynomial
is calculated as follows:

After derivation, it's not hard to find that the following equation holds

Evaluation proof

For any polynomial we choose, which is an element of the polynomial ring , it satisfies the
following division formula:

where is the divisor polynomial, is the remainder polynomial. Obviously, .

If we let , then clearly is a constant polynomial, so the above division decomposition
formula can be written as:

Furthermore, substituting into the above equation, we can get . So, the above division
decomposition formula can be rewritten as:

This formula is the core formula of the KZG10 protocol. That is, if we want to prove , we only need
to prove that can be divided by . Or in other words, there exists a quotient
polynomial satisfying:

If the value of at is not equal to , then is not a polynomial, but a Rational Function. And
for any Rational Function whose denominator is not a constant polynomial, we cannot use the above SRS to
calculate its commitment.

Therefore, the Prover only needs to send the commitment of to prove the existence of to the
Verifier, which is equivalent to proving that the evaluation of is correct.

Then the Verifier uses the Base elements provided by SRS to check the correctness of the decomposition
formula. For the Verifier, and are public, so the Verifier can check the decomposition formula
through the following formula:

The red parts in the above formula are provided by the Prover and do not expose the values inside .

The Polynomial Evaluation proof of the KZG10 protocol only contains one element of , with a size
of . And the verification algorithm of the Verifier is also . It should be mentioned that the Verifier
needs to complete two Pairing calculations, which, although of complexity, are quite expensive.

Degree Bound proof

KZG10 also supports proving that the Degree of a polynomial is less than or equal to .

The Prover's proof method is very straightforward, which is to construct a new polynomial ,

Obviously, the Degree of is less than or equal to . And because the highest power of in the Base
elements contained in the SRS is , theoretically, anyone (who doesn't know the value of) cannot
construct the commitment of any polynomial with a degree greater than or equal to .

Therefore, the Prover can construct the Degree Bound proof as:

The Verifier's verification method is also straightforward, checking whether is obtained by multiplying
 with .

Here, should also be a Base element in the SRS. This requires the SRS of KZG10 to include more
Base elements of :

Continuing to think, if the Prover needs to prove both the Degree Bound and Evaluation of at the
same time, then when generating the commitment of , he needs to produce two elements of ,

. Then the Verifier needs to complete 4 Pairing calculations to check both the
Evaluation and Degree Bound proofs simultaneously.

Perfect Hiding
If we care more about privacy protection during protocol interaction, then KZG10 needs to enhance the
protection of the polynomial . In the above KZG10 protocol, we assume that the attacker's
computational power is limited, meaning the attacker cannot reverse-engineer any information about
through .

In comparison, the traditional Pedersen Commitment has the property of Perfect Hiding, because its
commitment carries a random number as a blinding factor, so even if the attacker has infinite computing
power, they cannot reverse-engineer any information about through .

Where and are the public parameters of Pedersen Commitment. And is
the so-called blinding factor.

We will now explain how to convert the KZG10 protocol into a Perfect Hiding protocol. This scheme is from
[KT23], and its basic idea comes from [ZGKP17] and [PST13].

First, we can "try" to consider adding a random number as a blinding factor when KZG10 commits to ,
for example:

But such a commitment would have security issues. Because in Pedersen Commitment, the element
used to commit is a special Base element, and its relationship with other is unknown (i.e.,
independent). Therefore, the introduction of does not affect the commitment of the constant term of

.

Therefore, we need to expand the SRS and introduce an additional preset random value , specifically used
to commit the blinding factor :

Then the commitment of is defined as:

We will use a shorter symbol below to represent the commitment of .

Evaluation proof of Hiding-KZG10

Although we add a Blinding Factor to the Commitment, the Evaluation proof of may still expose
information about .

Imagine if the Prover wants to prove to the Verifier, he needs to calculate the quotient polynomial
, compute and send its commitment . If is sent directly, this would break the Perfect

Hiding property we want, because an attacker with "infinite computing power" could reverse-engineer
from , and then continue to calculate .

Therefore, we also need to add another different blinding factor to , denoted as :

We denote the commitment of with the blinding factor added as the short symbol .

Continuing to recall, the Verifier of Non-hiding KZG10 needs to check the following equation to verify the
commitment of :

However, in Hiding-KZG10, since both the polynomial commitment and the quotient polynomial
commitment have blinding factors, the Verifier can no longer complete the verification according to
the above Pairing equation:

Let's reason why the above equation doesn't hold. First, look at the left side of the equation, which is
equivalent to calculating

The right side of the equation is equivalent to calculating

The difference between the left and right sides is

To allow the Verifier to verify, we need to introduce an additional "group element" to balance the Pairing
verification formula:

Thus, the Verifier can verify through the following formula:

Or written as:

Where the red parts are provided by the Prover, and the blue parts are public values.

Degree Bound proof of Hiding-KZG10

To prove the Degree Bound of , we also need to add a Blinding Factor to the polynomial , then
calculate its commitment as the Degree Bound proof of :

At the same time, an additional element is needed for balancing,

This way, the Verifier can verify the Degree Bound proof of through the following equation:

Readers can verify for themselves why the above equation holds.

Evaluation-and-degree-bound proof of Hiding KZG10

Suppose for the same Polynomial , the Prover needs to prove both the Evaluation and Degree Bound
of simultaneously. If we use the above Evaluation and Degree Bound proof protocols separately, the
Prover would need to send two elements, and then the Verifier would need to complete 4 Pairing
calculations. In fact, we can combine these two proof steps into one: the Prover only sends two
elements, and the Verifier only needs to use two Pairings to complete the verification.

The Prover needs to construct two elements,

Another element is defined as:

The Prover sends the proof

And the Verifier needs to verify the following equation:

Another construction of Hiding KZG10
In the original [KZG10] paper, a scheme for achieving Perfect Hiding was also provided. We can compare
these two different styles of Hiding KZG10 variants.

The idea of this scheme is to add a random polynomial when committing to , rather than just a
single random blinding factor. Here, and are defined as follows:

Note that here, the Degree of the blinding polynomial is consistent with the Degree of . To
support the blinding polynomial (Blinding Polynomial), the SRS produced in the initial Setup phase needs to
introduce a random number to isolate the blinding factor from the normal message to be committed. So
the SRS is expanded to:

Below we define the calculation formula for :

Essentially, the commitment to the polynomial is actually a commitment to
.

When the Prover needs to prove , he not only needs to send the commitment of the quotient
polynomial , but also needs to calculate the value of at .

Where the polynomial is the quotient polynomial after dividing with blinding polynomial by
:

When the Verifier receives , he can verify the following equation:

Intuitively, although the Prover sent the value of at , as long as the Degree of is greater than
or equal to 1, the attacker cannot reverse-engineer through the value of alone, so there is at least
one random factor still protecting .

In fact, if we know that will be opened at most times throughout its lifecycle, then we don't
need to force the Degree of to be d, but it can be a polynomial of Degree . Because the -degree
blinding factor polynomial consists of random factors, when is calculated times, there is still
one random factor protecting the commitment of .

Take an extreme example where the Degree of is 1, then when the Prover proves the value at a
different point again, say , the Verifier would have the ability to recover , thus breaking the
Perfect Hiding property of the commitment to .

Evaluation-with-degree-bound proof

The next question is, in this Hiding-KZG10 scheme, can we prove and simultaneously
like in the first scheme? The paper [CHMMVW19] provided a scheme, which is different from the first
scheme. This scheme requires an interactive process (or using Fiat-Shamir transformation) when proving
Evaluation with degree bound, that is, the Verifier needs to provide a public random challenge number.

Commit

Assuming is opened at most times, then the Degree of the blinding polynomial only needs to
be equal to .

To prove the Degree Bound, we also need to commit to :

So overall, the commitment of is defined as:

Evaluation with degree bound protocol

Public inputs:

1. Commitment of polynomial

2. Commitment of polynomial

3. Evaluation point of polynomial ,

4. Evaluation result of polynomial:

Witness:

1. Blinding polynomial of polynomial

2. Blinding polynomial of polynomial

Step 1: Verifier sends random number ,

Step 2: Prover follows these steps

1. Prover calculates quotient polynomial :

3. Prover calculates aggregated blinding polynomial , obviously

4. Prover calculates quotient polynomial

5. Prover introduces an auxiliary polynomial , which takes value 0 at , i.e.,

6. Prover calculates the quotient polynomial of divided by ,

6. Prover commits to quotient polynomial , without adding any blinding factor

7. Prover commits to quotient polynomial , without adding any blinding factor

8. Prover commits to quotient polynomial of blinding polynomial

9. Prover calculates merged commitment

10. Prover outputs proof

The principle of this protocol can actually be understood from another perspective. The construction
process can be decomposed into: Batch of evaluations of two polynomials at the same point (using random
number). One is to prove that the polynomial takes value at , and the other is to prove
that takes value 0 at . We can introduce an auxiliary polynomial to represent the
random linear combination of these two polynomials about :

And the quotient polynomial of this aggregated polynomial divided by can be
expressed as:

Finally, the commitment calculated by the Prover is exactly equal to the commitment of the
quotient polynomial plus the commitment of the random polynomial .

Therefore, this proof idea is actually consistent with the idea of Evaluation proof.

Verification

The proof received by the Verifier is , then verify according to the following steps:

1. Calculate the commitment of , denoted as :

2. Calculate the commitment of the value of at , denoted as :

3. Verify the correctness of :

Comparison
In the first scheme, the Prover doesn't need to care about how many times the polynomial will be opened in
the future when committing, and only needs to add one random factor to achieve Perfect Hiding. The
second scheme requires the Prover to add enough random factors (in the form of random polynomials) at
once, and ensure that the number of times the polynomial is opened in the future will not exceed this
random factor.

An advantage brought by the second scheme is that in each proof of Evaluation, the proof only includes one
 element, plus one element; while the first scheme requires two elements.

Furthermore, the first advantage brought by the second scheme is that the Verifier only needs to calculate
two Pairings, while the first scheme requires three Pairings.

References

[KZG10] Kate, Aniket, Gregory M. Zaverucha, and Ian Goldberg. "Constant-size commitments to
polynomials and their applications." Advances in Cryptology-ASIACRYPT 2010: 16th International
Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings 16. Springer Berlin Heidelberg, 2010.

[KT23] Kohrita, Tohru, and Patrick Towa. "Zeromorph: Zero-knowledge multilinear-evaluation proofs
from homomorphic univariate commitments." Cryptology ePrint Archive (2023). https://eprint.iacr.org/
2023/917

[PST13] Papamanthou, Charalampos, Elaine Shi, and Roberto Tamassia. "Signatures of correct
computation." Theory of Cryptography Conference. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013. https://eprint.iacr.org/2011/587

[ZGKPP17] "A Zero-Knowledge Version of vSQL." Cryptology ePrint Archive (2023). https://eprint.iacr.or
g/2017/1146

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
"Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation." https://eprint.iacr.org/201
9/317

[CHMMVW19] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas
Ward. "Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS." https://eprint.iacr.org/201
9/1047

https://eprint.iacr.org/2023/917
https://eprint.iacr.org/2011/587
https://eprint.iacr.org/2017/1146
https://eprint.iacr.org/2019/317
https://eprint.iacr.org/2019/1047

	Understanding Hiding KZG10
	None-hiding KZG10
	Evaluation proof
	Degree Bound proof

	Perfect Hiding
	Evaluation proof of Hiding-KZG10
	Degree Bound proof of Hiding-KZG10
	Evaluation-and-degree-bound proof of Hiding KZG10

	Another construction of Hiding KZG10
	Evaluation-with-degree-bound proof
	Commit
	Evaluation with degree bound protocol

	Comparison
	References

