
Understanding Hiding KZG10  
Hiding KZG10 is a variant of the KZG10 protocol that produces polynomial commitments with a random
blinding factor, thus possessing the property of Perfect Hiding. This means that even if an attacker has
unlimited computational power, they cannot reverse-engineer any information about the polynomial from
the commitment. While Hiding KZG10 is not common, it is an important component in constructing
zkSNARKs with Zero-knowledge properties or other secure protocols.

This article introduces two different Hiding KZG10 schemes. The first scheme is from [KT23], and its main
technique is a simplified version of multivariate polynomial commitment from [PST13], [ZGKPP17], and
[XZZPS19]. The second scheme is from [CHMMVW19], which is an improvement on the original KZG10
protocol paper [KZG10].

None-hiding KZG10  
Let's first recall the basic KZG10 protocol. KZG10 is based on a pre-setup (Universal Trusted Setup) SRS:

 

Here,  is a secret value that needs to be forgotten after the Setup phase, otherwise, any party knowing 
could launch an attack. We use bracket notation  to represent scalar multiplication (Scalar
Multiplication)  on an elliptic curve group element, where  is the generator of the group. The
SRS consists of group elements from  and , which we call Base elements, as subsequent
commitments to polynomials are based on linear operations of these Base elements.

Since division operations on elliptic curve group elements are a difficult problem, if our computing power is
limited, we cannot calculate  from . This can be seen as, once we multiply a value  by a Base
element,  is hidden.

KZG10 requires a pairing friendly curve, meaning there exists another elliptic curve group  (with
generator ), where each element is represented as , i.e., . And there exists a bilinear pairing
operation that satisfies the following bilinearity and non-degeneracy properties:

 

Now assume we have a univariate polynomial 

 

Here, the Degree  of the polynomial needs to satisfy . Then the commitment  of the polynomial
is calculated as follows:

 

After derivation, it's not hard to find that the following equation holds

 

Evaluation proof  



For any polynomial  we choose, which is an element of the polynomial ring , it satisfies the
following division formula:

 

where  is the divisor polynomial,  is the remainder polynomial. Obviously, .

If we let , then clearly  is a constant polynomial, so the above division decomposition
formula can be written as:

 

Furthermore, substituting  into the above equation, we can get . So, the above division
decomposition formula can be rewritten as:

 

This formula is the core formula of the KZG10 protocol. That is, if we want to prove , we only need
to prove that  can be divided by . Or in other words, there exists a quotient
polynomial  satisfying:

 

If the value of  at  is not equal to , then  is not a polynomial, but a Rational Function. And
for any Rational Function whose denominator is not a constant polynomial, we cannot use the above SRS to
calculate its commitment.

Therefore, the Prover only needs to send the commitment of  to prove the existence of  to the
Verifier, which is equivalent to proving that the evaluation of  is correct.

 

Then the Verifier uses the Base elements provided by SRS to check the correctness of the decomposition
formula. For the Verifier,  and  are public, so the Verifier can check the decomposition formula
through the following formula:

 

The red parts in the above formula are provided by the Prover and do not expose the values inside .

The Polynomial Evaluation proof of the KZG10 protocol only contains one element  of , with a size
of . And the verification algorithm of the Verifier is also . It should be mentioned that the Verifier
needs to complete two Pairing calculations, which, although of  complexity, are quite expensive.

Degree Bound proof  

KZG10 also supports proving that the Degree of a polynomial  is less than or equal to .

The Prover's proof method is very straightforward, which is to construct a new polynomial ,

 



Obviously, the Degree of  is less than or equal to . And because the highest power of  in the Base
elements contained in the SRS is , theoretically, anyone (who doesn't know the value of ) cannot
construct the commitment of any polynomial with a degree greater than or equal to .

Therefore, the Prover can construct the Degree Bound proof  as:

 

The Verifier's verification method is also straightforward, checking whether  is obtained by multiplying
 with .

 

Here,  should also be a Base element in the SRS. This requires the SRS of KZG10 to include more
Base elements of :

 

Continuing to think, if the Prover needs to prove both the Degree Bound and Evaluation of  at the
same time, then when generating the commitment of , he needs to produce two elements of ,

. Then the Verifier needs to complete 4 Pairing calculations to check both the
Evaluation and Degree Bound proofs simultaneously.

Perfect Hiding  
If we care more about privacy protection during protocol interaction, then KZG10 needs to enhance the
protection of the polynomial . In the above KZG10 protocol, we assume that the attacker's
computational power is limited, meaning the attacker cannot reverse-engineer any information about 
through .

In comparison, the traditional Pedersen Commitment has the property of Perfect Hiding, because its
commitment carries a random number as a blinding factor, so even if the attacker has infinite computing
power, they cannot reverse-engineer any information about  through .

 

Where  and  are the public parameters of Pedersen Commitment. And  is
the so-called blinding factor.

We will now explain how to convert the KZG10 protocol into a Perfect Hiding protocol. This scheme is from
[KT23], and its basic idea comes from [ZGKP17] and [PST13].

First, we can "try" to consider adding a random number as a blinding factor when KZG10 commits to ,
for example:

 

But such a commitment would have security issues. Because in Pedersen Commitment, the element 
used to commit  is a special Base element, and its relationship with other  is unknown (i.e.,
independent). Therefore, the introduction of  does not affect the commitment of the constant term  of

.



Therefore, we need to expand the SRS and introduce an additional preset random value , specifically used
to commit the blinding factor :

 

Then the commitment of  is defined as:

 

We will use a shorter symbol  below to represent the commitment of .

Evaluation proof of Hiding-KZG10  

Although we add a Blinding Factor to the Commitment, the Evaluation proof of  may still expose
information about .

Imagine if the Prover wants to prove  to the Verifier, he needs to calculate the quotient polynomial
, compute and send its commitment . If  is sent directly, this would break the Perfect

Hiding property we want, because an attacker with "infinite computing power" could reverse-engineer 
from , and then continue to calculate .

Therefore, we also need to add another different blinding factor to , denoted as :

 

We denote the commitment of  with the blinding factor added as the short symbol .

Continuing to recall, the Verifier of Non-hiding KZG10 needs to check the following equation to verify the
commitment of :

 

However, in Hiding-KZG10, since both the polynomial commitment  and the quotient polynomial
commitment  have blinding factors, the Verifier can no longer complete the verification according to
the above Pairing equation:

 

Let's reason why the above equation doesn't hold. First, look at the left side of the equation, which is
equivalent to calculating

 

The right side of the equation is equivalent to calculating

 

The difference between the left and right sides is

 



To allow the Verifier to verify, we need to introduce an additional "group element" to balance the Pairing
verification formula:

 

Thus, the Verifier can verify through the following formula:

 

Or written as:

 

Where the red parts are provided by the Prover, and the blue parts are public values.

Degree Bound proof of Hiding-KZG10  

To prove the Degree Bound of , we also need to add a Blinding Factor to the polynomial , then
calculate its commitment as the Degree Bound proof of :

 

At the same time, an additional element  is needed for balancing,

 

This way, the Verifier can verify the Degree Bound proof of  through the following equation:

 

Readers can verify for themselves why the above equation holds.

Evaluation-and-degree-bound proof of Hiding KZG10  

Suppose for the same Polynomial , the Prover needs to prove both the Evaluation and Degree Bound
of  simultaneously. If we use the above Evaluation and Degree Bound proof protocols separately, the
Prover would need to send two  elements, and then the Verifier would need to complete 4 Pairing
calculations. In fact, we can combine these two proof steps into one: the Prover only sends two 
elements, and the Verifier only needs to use two Pairings to complete the verification.

The Prover needs to construct two  elements,

 

Another element  is defined as:

 

The Prover sends the proof

 



And the Verifier needs to verify the following equation:

 

Another construction of Hiding KZG10  
In the original [KZG10] paper, a scheme for achieving Perfect Hiding was also provided. We can compare
these two different styles of Hiding KZG10 variants.

The idea of this scheme is to add a random polynomial  when committing to , rather than just a
single random blinding factor. Here,  and  are defined as follows:

 

Note that here, the Degree of the blinding polynomial  is consistent with the Degree of . To
support the blinding polynomial (Blinding Polynomial), the SRS produced in the initial Setup phase needs to
introduce a random number  to isolate the blinding factor from the normal message to be committed. So
the SRS is expanded to:

 

Below we define the calculation formula for :

 

Essentially, the commitment to the polynomial  is actually a commitment to 
.

 

When the Prover needs to prove , he not only needs to send the commitment of the quotient
polynomial , but also needs to calculate the value of  at .

 

Where the polynomial  is the quotient polynomial after dividing  with blinding polynomial by
:

 

When the Verifier receives , he can verify the following equation:

 



Intuitively, although the Prover sent the value of  at , as long as the Degree of  is greater than
or equal to 1, the attacker cannot reverse-engineer  through the value of  alone, so there is at least
one random factor still protecting .

In fact, if we know that  will be opened at most  times throughout its lifecycle, then we don't
need to force the Degree of  to be d, but it can be a polynomial of Degree . Because the -degree
blinding factor polynomial consists of  random factors, when  is calculated  times, there is still
one random factor protecting the commitment of .

Take an extreme example where the Degree of  is 1, then when the Prover proves the value at a
different point again, say , the Verifier would have the ability to recover , thus breaking the
Perfect Hiding property of the commitment to .

Evaluation-with-degree-bound proof  

The next question is, in this Hiding-KZG10 scheme, can we prove  and  simultaneously
like in the first scheme? The paper [CHMMVW19] provided a scheme, which is different from the first
scheme. This scheme requires an interactive process (or using Fiat-Shamir transformation) when proving
Evaluation with degree bound, that is, the Verifier needs to provide a public random challenge number.

Commit  

Assuming  is opened at most  times, then the Degree of the blinding polynomial  only needs to
be equal to .

 

To prove the Degree Bound, we also need to commit to :

 

So overall, the commitment  of  is defined as:

 

Evaluation with degree bound protocol  

Public inputs:

1. Commitment  of polynomial 

2. Commitment  of polynomial 

3. Evaluation point of polynomial , 

4. Evaluation result of polynomial: 

Witness:

1. Blinding polynomial  of polynomial 



2. Blinding polynomial  of polynomial 

Step 1: Verifier sends random number ,

Step 2: Prover follows these steps

1. Prover calculates quotient polynomial :

 

3. Prover calculates aggregated blinding polynomial , obviously 

 

4. Prover calculates quotient polynomial 

 

5. Prover introduces an auxiliary polynomial , which takes value 0 at , i.e., 

 

6. Prover calculates the quotient polynomial  of  divided by ,

 

6. Prover commits to quotient polynomial , without adding any blinding factor

 

7. Prover commits to quotient polynomial , without adding any blinding factor

 

8. Prover commits to quotient polynomial  of blinding polynomial

 

9. Prover calculates merged commitment 

 

10. Prover outputs proof 



The principle of this protocol can actually be understood from another perspective. The construction
process can be decomposed into: Batch of evaluations of two polynomials at the same point (using random
number ). One is to prove that the polynomial  takes value  at , and the other is to prove
that  takes value 0 at . We can introduce an auxiliary polynomial  to represent the
random linear combination of these two polynomials about :

 

And the quotient polynomial  of this aggregated polynomial  divided by  can be
expressed as:

 

Finally, the commitment  calculated by the Prover is exactly equal to the commitment  of the
quotient polynomial plus the commitment of the random polynomial .

Therefore, this proof idea is actually consistent with the idea of Evaluation proof.

Verification

The proof received by the Verifier is , then verify according to the following steps:

1. Calculate the commitment of , denoted as :

 

2. Calculate the commitment of the value of  at , denoted as :

 

3. Verify the correctness of :

 

Comparison  
In the first scheme, the Prover doesn't need to care about how many times the polynomial will be opened in
the future when committing, and only needs to add one random factor to achieve Perfect Hiding. The
second scheme requires the Prover to add enough random factors (in the form of random polynomials) at
once, and ensure that the number of times the polynomial is opened in the future will not exceed this
random factor.

An advantage brought by the second scheme is that in each proof of Evaluation, the proof only includes one
 element, plus one  element; while the first scheme requires two  elements.

Furthermore, the first advantage brought by the second scheme is that the Verifier only needs to calculate
two Pairings, while the first scheme requires three Pairings.
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