
Notes on Hyrax-PCS
This article briefly introduces the principles of Hyrax-PCS, whose security assumption is Discrete Log. Its main idea is to
prove an Inner Product and adopts the recursive folding approach to gradually fold two vectors of length into two
vectors of length , reducing the inner product calculation to the inner product calculation of vectors with only half
the length. The recursive folding idea mainly comes from [BCC+16] and [BBB+18], with the main problem being that
the Verifier's computational complexity is . To make Hyrax meet the requirements of zkSNARK, Hyrax rearranges
the vector into a matrix, then reduces the inner product calculation to the inner product calculation of
vectors with length . This results in the Verifier's computational complexity being optimized to . At the same
time, after optimization by [BCC+16], Hyrax's Proof size (communication complexity) is also optimized to .

1. Evaluation Proof of MLE Polynomials
Whether the MLE polynomial is in Coefficients form or Evaluation form, we can prove the evaluation of the polynomial
at certain points through the "Inner Product Argument".

If we have an inner product proof protocol, we can easily construct an evaluation proof for MLE polynomials.

Public Input

1. Commitment of :

2.

3.

Witness

1.

Inner Product Protocol

Prover computes vector , length ,

Prover and Verifier use an Inner Product Argument protocol to prove that the inner product of and equals . Below,
we introduce a simple inner product proof that proves the inner product of two hidden vectors equals a public value.

2. Mini-IPA
Let's start with the simplest case. Suppose Prover has two vectors and , satisfying (note: is a public value
here).

Proof Goal

Prover has knowledge (two vectors of equal length, denoted as , so there are witnesses in total), and

Public Parameters

To compute the Pedersen Commitment of vectors, we need to select a set of random group elements
.

Public Input

1. Inner product result

2. Commitment of vector : ,

3. Commitment of vector :

Witnesses

1.

2.

Basic Protocol Idea

Prover introduces two "blinder vectors", and . These two vectors are flattened into one vector through a challenge
number (from Verifier):

Then calculate the inner product (or dot product) of .

Observing and , we find that both vectors have terms. After flattening the vectors and performing the inner
product operation, we get a quadratic polynomial in , where the "coefficient" of the term is exactly the inner

product of vectors and (should equal), and the constant term is exactly the inner product of the two "blinder
vectors". However, the coefficient of looks somewhat messy. We can ignore the messy coefficient of for now and
focus on the coefficient of the term. According to the Schwartz-Zippel theorem, as long as Prover can successfully
respond to Verifier's challenge, the coefficients of all terms in the polynomial must be (with high probability) correct.

We let Prover not only commit to the "blinder vectors" in the first step of the protocol but also commit to the
coefficients of the polynomial (in) after expanding the inner product. Then in the third step, Prover only needs to

send the two flattened vectors and , which is just right. Verifier first verifies if can open , then verifies if can

open , and finally Verifier verifies if can open the commitment . Let's see how the protocol is specifically
defined:

Protocol

Round 1

Prover sends commitments and of two "blinder vectors" and ; also sends polynomial coefficient
commitments and :

Round 2

1. Verifier replies with a challenge number

2. Prover sends two flattened vectors , , three random numbers mixed with : , ,

Verification

Verifier homomorphically verifies in group : and , and their inner product

The biggest problem with this protocol is that Verifier's computational complexity is , because Verifier needs to

compute . Also, is hidden information, but for the MLE Evaluation proof protocol, (computed from) is a
public value, so we need to adjust the protocol.

3. Square-root inner product argument
The Hyrax paper proposes a simple and direct approach to reduce Verifier's computational complexity to . A
Sublinear Verifier is a basic requirement of zkSNARK. We still only consider the Coefficients form of , i.e., is the
coefficient of .

We assume , so has a length of 16, and we can arrange this vector into a matrix:

The MLE polynomial represented by can be expressed in the following form:

The result of this matrix calculation is as follows:

We first split into two short vectors:

Then can be represented as:

Then, we calculate the commitments of the matrix composed of by rows, obtaining ,

Then we can use and to perform an inner product operation, obtaining :

Then can be seen as the inner product of the column vector of matrix and , denoted as

,

It's easy to verify:

Here .

Using this approach, we construct a simple MLE polynomial commitment scheme.

Public Input

1. Commitment of :

2.

3.

Witness

1.

Commitment

1. Prover rearranges into a matrix :

2. Prover calculates commitments by row

Evaluation Proof Protocol

1. Prover and Verifier split into two short vectors, represented by and respectively:

Obviously

Round 1

1. Prover calculates , length :

2. Prover calculates the matrix multiplication of and , obtaining a new vector , length

2. Prover calculates the commitment of

Round 2.

Prover and Verifier conduct an Inner Product Argument protocol to complete the inner product proof of and .

1. Prover first samples a random number vector , used to protect the information of , then calculates its
commitment:

2. Prover calculates the inner product of and , obtaining

Round 3.

1. Verifier sends a random number

2. Prover calculates and sends the following values:

Verification

Verifier verifies:

4. Bulletproofs Optimization
In the Round-2 of the "inner product proof" protocol (Mini-IPA) mentioned above, since Prover needs to send a vector
of length (), the overall communication of the protocol is . If the vector is quite long, the final proof size will be
relatively large. J. Bootle et al. proposed a very interesting idea in the [BCC+16] paper, using a recursive method to
gradually fold the proof, achieving compression of the proof size.

Suppose we have a vector of length 4, we can split it in half into two vectors and
, then stack them vertically to form a matrix:

Then we perform a "flattening" operation on this matrix (with the help of a random number vector):

As shown in the above formula, we left multiply the matrix by a random number vector , then obtain a vector
 of length 2. We can view this action as a special vertical flattening. This trick is slightly different from the vertical

flattening in the previous text, not using the naive flattening vector . We call this action "folding".

We can notice that the length of the folded vector is only half of . Doing this recursively, by Verifier continuously
sending challenge numbers and Prover repeatedly recursively folding, the vector can eventually be folded into a vector
of prime length. However, if we are allowed to append some redundant values to the vector to align the vector length
to , then after folds, we can fold the vector into a number with a length of only 1. This is equivalent to performing
horizontal flattening on a matrix.

This preliminary idea faces the first problem, which is that after the vector is cut in half, the commitment of the
original vector seems unusable. So how can Verifier obtain the commitment of the folded vector after Prover
performs a folding action? From another perspective, Pedersen commitment, in a sense, is also a kind of inner product,
that is, the inner product of the "vector to be committed" and the "base vector":

The next trick is crucial. We split the base vector in the same way, then fold it similarly, but use a different
"challenge vector":

Please note that the two challenge vectors and above look symmetric. The purpose of doing this is to

create a special constant term. When calculating the inner product of the new vectors and together, its constant

term is exactly the inner product of the original vector and . But for the non-constant terms (coefficients of and
 terms), they are some values that look rather messy.

Let's expand the calculation. First, we split into two sub-vectors , , then perform folding

respectively to get , ,

The right side of the above formula is a polynomial in , so we can clearly see the coefficients of and .

Next, let's solve the problem raised above: How to let Verifier calculate the commitment of the folded vector :

We let Verifier calculate . Obviously, Verifier can calculate on their own, then Verifier can calculate
based on sent by Prover.

The commitment is a polynomial in , where the constant term is the commitment of the original vector, and the
coefficients of the and terms can be calculated and sent by Prover. What about the coefficients of the and

 terms? They happen to be zero. Because we cleverly used two symmetric challenge vectors to perform folding

operations on and respectively, the coefficients of the and terms are exactly canceled out, while making the
constant term equal to the inner product of the original vectors.

The new commitment is easy to calculate , where , . The
commitments and appear to be the result of cross inner products of the two sub-vectors. In this way, the problem
is solved. When Prover needs to send a vector of length , Prover can choose to send the vector that is folded
and flattened, which has a length of only . Then Verifier can also verify the correctness of the original vector by
verifying the opening of the folded and flattened vector.

Recursive folding also has its cost. In addition to Verifier having to calculate extra, Prover also has to calculate and
 extra, and they also need to add one round of interaction. We can see the complete process of recursive folding

through the following recursive folding inner product proof protocol.

Public Parameters

;

Public Input

Witnesses: ;

Step 1 (Commitment Step): Prover sends commitments of two mask vectors and , :

1.

2.

3.

Step 2 (Challenge): Verifier replies with a challenge number

Step 3: Prover calculates the flattened vectors , , with , and sends

1.

2.

3.

4.

Verification

Verifier can calculate

1.

Thus, Prover and Verifier can continue to run the rIPA protocol to prove , where the commitments of these

three values are merged into .

5. Complete Protocol
Below is the complete protocol combining recursive folding and Square-root IPA, which supports the Zero-Knowledge
property. If the ZK property is not needed, simply remove the part related to .

Public Parameters

.

Calculating Commitment

1. Prover rearranges into a matrix :

2. Prover calculates commitments by row

Here, is defined as:

Evaluation Proof Protocol

Public Input

1. Commitment of :

2. , where ,

3.

Witness

1.

2.

Proof Protocol

Round 1

1. Prover calculates :

2. Prover calculates the matrix multiplication of and , obtaining , length

3. Prover calculates the commitment of

Round 2.

Prover and Verifier conduct an IPA protocol to complete the inner product proof of and , is calculated as follows:

1. Verifier sends a random number

2. Prover and Verifier calculate

Round 3 (Repeated).

First introduce the following symbols, for example, represents the first half of , represents the second half of .

Note the initial values here, , , , .

1. Prover sends and :

2. Verifier sends a random number ,

3. Prover calculates and sends the following values:

4. Prover and Verifier calculate

5. Prover and Verifier recursively perform Round 3 until

6. Prover calculates

Round 4.

1. Prover calculates and sends , where are random numbers sampled by Prover

Round 5.

1. Verifier sends a random number

2. Prover calculates and

Verification

1. Verifier calculates and

2. Verifier verifies if the following equation holds

References

1. [WTSTW16] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. "Doubly-efficient
zkSNARKs without trusted setup." In 2018 IEEE Symposium on Security and Privacy (SP), pp. 926-943. IEEE, 2018. ht
tps://eprint.iacr.org/2016/263

2. [BBB+18] Bünz, Benedikt, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
"Bulletproofs: Short proofs for confidential transactions and more." In 2018 IEEE symposium on security and
privacy (SP), pp. 315-334. IEEE, 2018. https://eprint.iacr.org/2017/1066

3. [BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. "Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting." In Advances in Cryptology–EUROCRYPT
2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II 35, pp. 327-357. Springer Berlin Heidelberg, 2016. https://eprint.iacr.o
rg/2016/263

https://eprint.iacr.org/2016/263
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2016/263

	Notes on Hyrax-PCS
	1. Evaluation Proof of MLE Polynomials
	Public Input
	Witness
	Inner Product Protocol

	2. Mini-IPA
	Proof Goal
	Public Parameters
	Public Input
	Witnesses
	Basic Protocol Idea
	Protocol
	Round 1
	Round 2
	Verification

	3. Square-root inner product argument
	Public Input
	Witness
	Commitment
	Evaluation Proof Protocol
	Round 1
	Round 2.
	Round 3.
	Verification

	4. Bulletproofs Optimization
	Public Parameters
	Public Input
	Verification

	5. Complete Protocol
	Public Parameters
	Calculating Commitment
	Evaluation Proof Protocol
	Public Input
	Witness
	Proof Protocol
	Round 1
	Round 2.
	Round 3 (Repeated i=0, 1, ..., n-1).
	Round 4.
	Round 5.
	Verification

	References

