
Notes on HyperKZG  
In Gemini-PCS [BCHO22], a coefficient-form MLE polynomial corresponds to a univariate polynomial,

 

corresponds to a univariate polynomial:

 

When we determine a public evaluation point , the value of the MLE polynomial  at  can be expressed as the
following Tensor Product:

 

Next, Gemini-PCS uses the Split-and-fold approach to convert the above equation into the correctness of evaluations of multiple univariate
polynomials, which can be proven using KZG10.

However, MLE polynomials are usually represented in point-value form by default,

 

To use Gemini-PCS, the Prover needs to first convert the point-value form of MLE to the coefficient form mentioned above, i.e., calculate the 
vector from the  vector. This conversion algorithm is similar to FFT computation, with a time complexity of , where .

The idea of HyperKZG is to still utilize the core Split-and-fold approach of Gemini-PCS, but without the need for polynomial conversion similar
to FFT. This may sound incredible at first, but the key point here is that MLE polynomials are essentially linear polynomials in multidimensional
space. Whether in Evaluation-form or Coefficient-form, their computation process is actually a linear operation. At the same time, the Split-
and-fold approach adopted by Gemini-PCS is also a mapping process that continuously reduces the dimensionality of high-dimensional space.
Therefore, this Split-and-fold process can be transplanted to the Evaluation-form of MLE, achieving the same folding effect, but perfectly
avoiding the complex calculations of polynomial Basis conversion.

1. Review of Gemini-PCS Principles  
Gemini [BCHO22] provides a method for mapping MLE polynomials to univariate polynomials. Below is the definition of an MLE:

 

If we use a coefficient vector  of length  to represent , then we can define a Univariate polynomial  that has the same
coefficients as :

 

If we substitute  into the above equation, we get:

 

Then by adding and subtracting these two equations respectively, we can get:

 

 

Now let's observe the "partial computation" Partial Evaluation of , i.e., instantiating only one unknown :

 

Here, the coefficient vector of  is

 

It is exactly the same as the coefficient vector of the following UniPoly:

 

And the univariate polynomial  plus , , the three exactly satisfy the following relationship:

 



So, if we want to prove that  is the Partial Evaluation of , we only need to prove that the above
equation holds.

Similarly, if we want to prove , we can introduce several intermediate results, namely Partial Evaluated MLE
polynomials, and their isomorphic mappings to univariate polynomials

 

where the last  is a constant polynomial, which is exactly the complete computation result of , i.e., .

And, these introduced univariate polynomials  satisfy the following relationship between every two adjacent items:

 

where  is the final MLE computation result, and  is the UniPoly isomorphic to : .

Back to our proof goal: , we split the proof of this computation process into the following steps:

Construct a Univariate polynomial  such that its coefficient vector is equal to the coefficients of , and construct the polynomial
commitment 

The polynomial  computation process includes  steps of partial computation, each intermediate partial computation will produce a

new MLE polynomial: 

Prove that the Univariate polynomials corresponding to these intermediate MLEs satisfy a recursive relationship, which is randomly
sampled and checked through the random number  provided by the Verifier:

 

Prove that 

Prove that all Univariate polynomials  are correctly evaluated at 

2. Linear Folding of Evaluation-form  
If we use the evaluation-form of MLE in the PIOP proof system, then we need a conversion operation similar to FFT to convert it to the
coefficient-form of MLE. The complexity of this conversion operation is .

In Nova's implementation, Setty provided an improved scheme for HyperKZG. It utilizes a general technique behind the Gemini PCS scheme,
which is independent of whether  is in Evaluation-form or Coefficient-form, as long as they can split the calculation process into multiple
steps of linear operations.

Reviewing the MLE operation evaluation proof introduced in the Gemini paper in the previous section, it decomposes the Evaluation process
of  into  steps, then maps the coefficient vector of each intermediate MLE to the coefficients of a UniPoly, and
then proves the relationship between these UniPolys to ensure the correctness of  operation.

For an MLE polynomial  in Evaluation-form, let's look at its evaluation process:

 

Here  are Lagrange Polynomials, defined as follows:

 

where  is the -th bit of the binary representation of  (note that Big-endian representation is used here). For example, if , its
binary representation is , then , , .

It's easy to see from the definition that  satisfies the following splitting property (Tensor Structure):

 

where  is the splitting of the binary bit vector of . For example, , its binary representation is , which can be split into
, or written as . According to the splitting property, we can get:

 

Then let's observe what  looks like after one Partial Evaluation, let , :



 

We can see that the Evaluation point value vector of  is:

 

Comparing with the coefficient vector of , we will find that both are only half the original length, but the halving method is different.
The former is , while the latter is . This new halving method does not prevent us from using Gemini-PCS
technology to ensure the correctness of Split-and-fold, but perfectly avoids the complex calculations of polynomial Basis conversion. We can
still introduce  partially computed MLE polynomials, and map their Evaluations to the coefficients of multiple UniPolys:

 

where , and ,

And give a "similar" recursive relationship that their Evaluation forms satisfy:

 

Therefore, the Verifier can then send a unique random challenge point  to check whether  satisfy the recursive relationship
defined by the above equation. This is where the KZG10 PCS scheme for Univariate polynomials can be connected to complete the rest of the
proof.

3. Protocol Description  
This section provides a description of the protocol flow. The protocol is to prove that the computation result of an MLE polynomial

 at a given point  equals .

Witness Input:  

1. : The coefficient vector of polynomial .

 

Public Input:  

1. : The commitment of the isomorphic polynomial  of MLE polynomial ,

 

2. : The coordinates of the evaluation point

3. : The result of the computation

Round 1  

1. Prover computes 

 

2. Prover outputs commitments 

Round 2  

1. Verifier sends random challenge number ,



2. Prover computes and sends , , , ,

3. Prover proves the correctness of the above Evaluations and sends proofs: , , ,

Verification  

1. Verify if the values of  at ,  and  satisfy the recursive formula:

 

2. Based on , verify the correctness of polynomial evaluation operations:

 

4. Protocol Optimization  
There are several points that can be optimized in the above protocol:

1. The Prover doesn't need to send all computation values at  except for , because the Verifier can calculate them through
the following recursive relationship. This can reduce the Prover's communication volume, and at the same time, the Verifier's calculation
process is equivalent to performing verification simultaneously, thus saving the recursive formula verification process.

 

2. The Prover can aggregate  together through a random number , obtaining , and then prove the values of
 at . This can avoid the Prover sending  independent KZG10 Evaluation proofs, and only need to send three

Evaluation proofs.

Below is the protocol description after optimization

Round 1  

Prover computes 

 

Prover sends polynomial commitments 

Round 2  

1. Verifier sends random challenge number ,



2. Prover computes and sends , , , , 

Round 3  

1. Verifier sends random challenge number ,

2. Prover computes aggregated polynomial ,

 

3. Prover computes 

 

4. Prover computes 

 

Here, assume Domain , and  are Lagrange Polynomials on . Then  satisfies the
following equation: there exists a quotient polynomial  such that

 

5. Prover computes quotient polynomial  and sends its polynomial commitment 

Round 4  

1. Verifier sends random challenge number 

2. Prover computes linearization polynomial  of , satisfying ,

 

3. Prover sends the commitment of the linearization polynomial 

4. Prover computes quotient polynomial  satisfying:

 

Prover sends 

Verification  

1. Compute ,

 

2. Compute ,

 

3. Compute the value of  at , ,

4. Compute 

5. Compute the commitment of :

 

4. Verify the relationship between  and :

 

5. Performance Analysis  



Proof size:  + 

 

Verifier Cost:  + 

1. 

2. Compute ： 

3. Compute ： 

4. Compute :  Scalar Multiplication

5. Compute :  Scalar Multiplication
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