
Gemini-PCS (Part II)
Tianyu ZHENG tian-yu.zheng@connect.polyu.hk

In the first part, we introduced the Tensor product check protocol in Gemini [BCH+22] for implementing
multivariate polynomial evaluation proofs, and briefly explained how to apply it to practical proof systems
to convert multivariate polynomials to univariate polynomials. In this part, we mainly focus on the security
of the Tensor product check protocol and propose some optimizations based on Gemini.

Review
For ease of reading, let's first review the process of the tensor product check protocol:

[Tensor-product Check Protocol]

Target relation:

Prover input: Public parameters, instance , secret

Verifier input: Public parameters, instance

1. The prover constructs a univariate polynomial .

2. For , the prover computes

where are polynomials composed of even and odd order terms of respectively,

satisfying .

3. The prover sends Oracles of to the verifier.

4. The verifier randomly selects a challenge value and makes the following queries to the Oracles:

where , when , ignore the query , and directly set .

5. For , the verifier checks

Security Analysis
[Completeness]

Given a polynomial coefficient vector satisfying , a prover honestly executing the

above protocol will certainly pass the verification. According to our discussion in the [Split-and-fold Check

Protocol], when the prover correctly performs the split to obtain , the folded
will definitely pass the verification, and satisfies the following expression

mailto:tian-yu.zheng@connect.polyu.hk

where . Obviously, when , .

[Soundness]

Here we adopt a different proof method from the original Gemini paper, which is easier to understand.

Assume , for a malicious prover, if it can output a series of interaction data, including

Oracles of polynomials , and pass the verification. Then there must be at least one
pair of Oracles whose contained polynomials do not satisfy the split-and-fold relationship. That is, there
exists a such that

is a non-zero polynomial. Note that the highest order of is . Let event represent that
 is a non-zero polynomial and . According to the Schwartz-Zippel lemma,

. Then, for all , the probability that there exists a non-zero
polynomial that happens to be 0 at point can be bounded by the union bound

[About degree bound]

Note that in the original Gemini paper, the verifier needs to check that the order of each is strictly less
than or equal to . This point is also reflected in the above proof: assuming that the highest order of

 is .

However, after research, we find that the degree check is not necessary: even if a malicious prover is
allowed to construct an illegal in each round, whose order is greater than the legal but less than or
equal to , we can still get a negligible soundness error (although slightly larger than the original).
Specifically, for any , we have , so we can get
(when , it's).

Therefore, the degree bound check in the Tensor-product check protocol based on KZG10 implemented in
the first part can be ignored to reduce elements in the proof.

Implementing Zero-Knowledge
Gemini did not discuss how to implement the ZK property of the tensor product check. Here we provide two
feasible schemes.

[Scheme One]

Adopting a similar idea to implementing zk sumcheck in the paper [CAS17], we can directly add a blinding
polynomial of the same size to the original polynomial . That is, for each non-zero coefficient
monomial in , contains a corresponding monomial with a random coefficient. Let

.

Next, the prover only needs to additionally commit to and send the commitment value
and to the verifier. The verifier then randomly selects a challenge to combine the tensor product
relations of and as

Then, the prover and verifier jointly complete the Tensor product check protocol for the above relation. We
won't elaborate further on the specific construction of this scheme.

[Scheme Two]

The above method is very straightforward, but the disadvantage is that the prover needs to add an
additional random polynomial as large as (length). Referring to the optimization scheme of zk
sumcheck in [CFS17] in Libra [XZZPS19], we can also propose an optimized scheme to implement the zk
tensor product protocol, which can significantly reduce the size of the blinding polynomial.

The idea of this optimization scheme is: since the prover only sends a total of point values in the tensor
product check, the blinding polynomial needs to contain at least random coefficients to ensure the zero-
knowledge property of the protocol.

Specifically, let the blinding polynomial be:

[Zero-Knowledge Tensor Product Check Protocol]

To prove

1. The prover constructs a blinding polynomial and pads its coefficient vector with zeros to length

2. The prover computes and sends the following data to the verifier

3. The verifier randomly selects and sends it to the prover, then computes .

4. The prover and verifier run the tensor product check protocol to prove the following relation

For convenience, let . The proof that the above construction satisfies zero-
knowledge is as follows:

[Proof]

First, the simulator can be constructed according to the following steps:

1. first inputs a random challenge value

2. uniformly randomly generates vector and computes polynomial , as well as

3. computes and commitment

4. runs a tensor product check protocol with , where the proof relation is .

Obviously, the messages in steps 1 and 3 are probabilistically indistinguishable from those sent by an
honest prover .

Next, we only need to show that the tensor product check protocol run by and in step 4 also satisfies
this property. Specifically, because the protocol satisfies soundness, for each oracle ,
it satisfies

Note that for on the right side of the equation, its corresponding oracle also satisfies an equation
related to . Therefore, we can always expand the right expression satisfied by any into a
form that only includes . Thus, the response obtained by querying the

oracle at any point must be a linearly independent constraint on .

In summary, after performing the tensor product check protocol, will obtain , values on
, and one value of , i.e., . Because contains a blinding polynomial of size , the

verifier cannot interpolate to obtain all coefficients of the blinding polynomial, so this protocol is
indistinguishable from the protocol executed by an honest verifier.

References
[BCH+22] Bootle, Jonathan, Alessandro Chiesa, Yuncong Hu, **et al. "Gemini: Elastic SNARKs for Diverse
Environments." Cryptology ePrint Archive (2022). https://eprint.iacr.org/2022/420

[CFS17] Chiesa, Alessandro, Michael A. Forbes, and Nicholas Spooner. "A zero knowledge sumcheck and its
applications." arXiv preprint arXiv:1704.02086 (2017).

[XZZPS19] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., & Song, D. "Libra: Succinct zero-knowledge proofs
with optimal prover computation." https://eprint.iacr.org/2019/317

https://eprint.iacr.org/2022/420
https://eprint.iacr.org/2017/305
https://eprint.iacr.org/2019/317

	Gemini-PCS (Part II)
	Review
	Security Analysis
	Implementing Zero-Knowledge
	References

