
Gemini-PCS (Part I)
Tianyu ZHENG tian-yu.zheng@connect.polyu.hk

Gemini [BCH+22] is an elastic SNARK, where "elastic" means that the prover can balance between proof time
and memory by setting parameters to meet the requirements of different usage scenarios.

As the core algorithm of Gemini, Tensor Product Check provides us with a method to prove the evaluation of
multilinear polynomials, such as . In other words, this method realizes the conversion from
multivariate polynomials to univariate polynomials, thus inspiring us to construct a new multivariate
polynomial commitment scheme.

In terms of specific construction, Tensor Product Check adopts the split-and-fold idea similar to previous work
(Sumcheck, Bulletproofs, FRI), achieving relatively efficient communication and verifier complexity, while its
prover algorithm can achieve elastic properties.

MLE and Tensor Product
In the Zeromorph notes, we mentioned that a Multilinear Extension uniquely corresponds to a function
mapping from Boolean vectors to finite fields, in the form of . The figure below is an
example of a three-dimensional MLE polynomial , which can be uniquely represented by the
"point-value vector" .

Similarly, an MLE polynomial can also be represented using a "coefficient form". For example, the above figure
can be written as

The ordering of monomials in this expression is based on Lexicographic Order.

In addition to the "point-value form" and "coefficient form", we will now introduce a new form of expression -
the expression based on "tensor product".

Simply put, tensor product is a special "multiplication" between two vectors, denoted as . Specifically, we

can first calculate (assuming are both column vectors), then concatenate the resulting matrix into a
vector column by column, and this vector is the result of the tensor product. For example, for

and :

mailto:tian-yu.zheng@connect.polyu.hk

We get .

Comparing with the MLE polynomial expressed in "coefficient form" that we mentioned earlier, we will find
that all its monomials can be obtained by a continuous tensor product:

We abbreviate the left-hand side as . Then an MLE polynomial can be written in inner product

form:

where the left element is the coefficient vector , and the right element is a monomial vector .

Split-and-Fold Method
In Gemini, the authors present a protocol for checking the correctness of tensor products based on a
univariate polynomial commitment scheme (such as KZG10). Based on this protocol, we can further construct
a conversion from multivariate to univariate polynomials. We will first use the three-dimensional MLE
polynomial mentioned earlier as an example to explain the main idea of Tensor Product Check.

Suppose the prover wants to prove the instance: , satisfying the relation

, where are in the finite field .

For convenience, we rewrite the subscripts of elements in vector into binary representation in little-endian
order, i.e.,

where .

After expanding the renumbered tensor product, we get the following equation

We will find that the subscripts of each coefficient correspond one-to-one with the exponents of the
multiplied , i.e.,

Therefore, we can always divide into two equal-length parts according to the exponent of , and the two

parts satisfy a tensor product subproblem respectively. For example, after dividing according to , we can

obtain two tensor product relations about :

Note that in these two subproblems, the right elements of the inner product are the same: both are

, so they can be further combined into one .

It can be seen that for a vector of length , we divide it into two vectors of length , and then combine
them into one vector. Through this round of operation, we turn a tensor product problem of size into a
problem of size .

By analogy, this problem can eventually be reduced to size .

[Multivariate Polynomial Split-and-fold]

As mentioned earlier, we can view a tensor product relation as a multivariate polynomial evaluation relation,
i.e.,

For the multivariate polynomial , its split-and-fold process in the -th round () is as follows:

split: The prover divides the multivariate polynomial into two parts: the first part contains any

monomial that includes of order 0 (denoted as), the second part contains any monomial that

includes of order 1 (denoted as), satisfying

fold: The prover linearly combines the two separated polynomials , using as the
weight for combination, resulting in a new multivariate polynomial denoted as

.

The figure below shows the calculation process when :

Tensor Product Check Protocol
Through the above recursive algorithm, we reduce the correctness check of a tensor product relation of length

 to checking the correctness of split-and-fold processes.

In fact, this divide-and-conquer problem-solving idea (split-and-fold) has appeared in many previous protocols,
such as Sumcheck, Bulletproofs, and FRI. The difference is that Gemini provides a protocol based on KZG10 to

prove the split-and-fold process, which requires interactions.

We present the PIOP protocol for proving tensor product relations as follows:

[Tensor-product Check Protocol]

Target relation:

Prover input: Public parameters, instance , secret

Verifier input: Public parameters, instance

1. The prover constructs a univariate polynomial .

2. For , the prover calculates

where are polynomials composed of even-order terms and odd-order terms of

respectively, satisfying .

3. The prover sends Oracles of to the verifier.

4. The verifier randomly selects a challenge value and makes the following queries to the Oracles:

where , when , ignore the query , and directly set .

5. For , the verifier checks

In each round, the prover will generate Oracles for the polynomials before split and after fold respectively.
Specifically, a split-and-fold relation can be written as:

Given , weight , they satisfy the following relations

Since even and odd polynomials satisfy (1) , (2)
 respectively, we can further write the above two equations into one, i.e.,

To check if this equation holds, the verifier only needs to randomly select a challenge value in the finite field
, and check if the values of satisfy the relation when .

Multivariate to Univariate Conversion
Before introducing the protocol for multivariate to univariate conversion, let's delve deeper into some
principles hidden in the tensor product protocol. Although the goal of the tensor product protocol is to prove
the value of a multivariate polynomial, apart from inputting the coefficient vector of the multivariate
polynomial, all polynomials involved in the protocol are univariate.

Let's write out the Split-and-fold process using univariate polynomials:

[Univariate Polynomial Split-and-fold] In the -th round:

split: The prover divides the univariate polynomial into two parts: the first part contains any

monomial that includes of even order (denoted as), the second part contains any monomial

that includes of odd order (denoted as), satisfying

fold: The prover linearly combines the two separated polynomials , using as the
weight for combination, resulting in a new univariate polynomial denoted as

. [Note] Here we need to introduce an additional mapping

 to obtain .

Therefore, the tensor product protocol can be seen as the prover simultaneously executing a recursive
algorithm on the univariate polynomial to simulate the calculation process of .

We use a three-dimensional polynomial as an example to describe the calculation process in the round:

The split-and-fold calculation of univariate polynomials is as follows:

Compared with the split-and-fold of multivariate polynomials, the variable in the first round of univariate
polynomials corresponds to in the multivariate, and in the second round, corresponds to . In fact,

these two processes are calculations on the coefficient vector in different "bases".

When we need to calculate the value of a multivariate polynomial on the basis , we only need to
perform the same operation synchronously on (i.e., on univariate polynomials) to simulate the
evaluation process of multivariate polynomials using univariate polynomials.

More formally, we get a mapping relation from the multivariate basis vector space to the univariate basis
vector space:

Therefore, we say that the tensor product protocol provides us with a proof method from multivariate to
univariate, i.e., multi-to-uni IOP. As shown in the figure below, ideally, we hope that the prover can directly
generate an Oracle of a multivariate polynomial and send it to the verifier. However, in engineering, there is a
lack of efficient multivariate polynomial commitment schemes, so the prover can only construct a proof
protocol for Tensor Product Check (i.e., Multi-Uni-IOP) to simulate the calculation process of multivariate
polynomial evaluation on univariate polynomials.

The prover needs to send Oracles of univariate polynomials, allowing the verifier to make queries and
checks respectively. Since these checks are independent of each other, the verifier can make queries on all
Oracles at a certain point at once, without needing points.

Implementation Based on KZG
For the IOP protocol given above, we can deploy a univariate polynomial commitment scheme (KZG10) to
compile it into an AoK (Argument of Knowledge). KZG10 can support the evaluation proof of a polynomial at a
certain point, with the advantage of constant-sized proofs and support for batch proofs. The disadvantage is
that it requires trusted initialization, and the proof complexity is relatively high (requiring FFT computation).

[Note] Since we compile IOP into Argument of Knowledge, KZG10 needs to satisfy extractability, the proof of
which is given in Marlin [CHM+19].

Let's briefly review the proof principle of KZG10: Given public parameters: . In the
initialization phase, randomly select and calculate and vector

We use bracket notation to represent scalar multiplication on an elliptic curve group element. The
KZG proof process is as follows:

1. The prover calculates the commitment of the univariate polynomial of degree :
.

2. The prover publicly announces the value of the polynomial at point as , and calculates the
quotient polynomial

Generate evaluation proof .

3. The verifier checks the evaluation proof .

Therefore, to compile the IOP protocol, we only need to commit to the polynomials produced
in the protocol respectively, and open them at specified points . However, there are two points that
still need our attention: (1) The degrees of these polynomials are not the same. To prevent the prover from
cheating using polynomials that do not satisfy the degree requirements, we need to use the method in Marlin,
Zeromorph [CHM+19, KT23] to limit the Degree Bound of polynomials. (2) Most polynomials need to be
opened at three points . If we generate evaluation proofs for each point separately, it will increase
the proof size and verification complexity. Multi-point evaluation proof techniques can be used to optimize
this problem.

Degree Bound Proof: To prove

The prover provides and additionally sends to the verifier

The verifier checks the equation

Multi-point Evaluation Proof: To prove that is opened as at

The prover randomly generates a polynomial of the same degree as , which needs to pass
through points

The prover provides and the evaluation proof

The verifier checks the equation

[Note] Both of the above techniques require additional generation of in
the Setup phase.

[Protocol Description]

Below we first give the Multi-to-Uni AoK scheme compiled based on KZG:

Instance

Univariate polynomial commitment of vector , length

Evaluation point vector

Evaluation result

Witness

Coefficient vector of the multivariate polynomial

Interaction Process

1. The prover generates polynomials and calculates and sends their commitments

2. The prover calculates and sends degree bound proofs of polynomials :

3. The verifier randomly selects point and sends it to the prover

4. The prover calculates the evaluation proof for each polynomial, where

 %

 %

5. The verifier checks:

The correctness of degree bound proofs for

The correctness of multi-point evaluation proofs for

The correctness of split-and-fold relations, i.e., for , whether the following equation
holds:

[Performance Analysis]

Proof size: elements

Verifier computation:

References
[BCH+22] Bootle, Jonathan, Alessandro Chiesa, Yuncong Hu, **et al. "Gemini: Elastic SNARKs for Diverse
Environments." Cryptology ePrint Archive (2022). https://eprint.iacr.org/2022/420

[KT23] Kohrita, Tohru, and Patrick Towa. "Zeromorph: Zero-knowledge multilinear-evaluation proofs from
homomorphic univariate commitments." Cryptology ePrint Archive (2023). https://eprint.iacr.org/2023/917

[CHM+19] Chiesa, Alessandro, Yuncong Hu, Mary Maller, et al. "Marlin: Preprocessing zkSNARKs with Universal
and Updatable SRS." Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/1047

https://eprint.iacr.org/2022/420
https://eprint.iacr.org/2023/917
https://eprint.iacr.org/2019/1047

	Gemini-PCS (Part I)
	MLE and Tensor Product
	Split-and-Fold Method
	Tensor Product Check Protocol
	Multivariate to Univariate Conversion
	Implementation Based on KZG
	References

