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This article mainly introduces the WHIR (Weights Help Improving Rate) protocol [ACFY24b]. Like the FRI [BBHR18],
STIR [ACFY24a], and BaseFold [ZCF24] protocols, WHIR is also an IOPP protocol, but it has a smaller query complexity
and a faster verification time. The paper [ACFY24b] mentions that WHIR's verifier typically runs in hundreds of
microseconds (1 microsecond =  seconds), while other protocols' verifiers take a few milliseconds (1 millisecond
=  seconds). Additionally, WHIR is an IOPP protocol for constrained Reed-Solomon codes (CRS), which allows WHIR
to support queries for both multivariate linear polynomials and univariate polynomials, which is why WHIR can be
compared simultaneously with BaseFold, FRI, and STIR [ACFY24b]. Overall, WHIR combines the ideas of BaseFold
and STIR, enabling the WHIR protocol to support multivariate linear polynomials without sacrificing Prover efficiency
and argument size, while also having a smaller query complexity.

From Univariate Polynomials to Multivariate Linear
Polynomials

 

For a finite field , evaluation domain , and Reed-Solomon encoding of degree , it represents the set of
evaluations of all univariate polynomials over  with degree strictly less than  on , denoted as .
Assuming  is a multiplicative coset of , and its order is a power of 2 (called "smooth" ), and also assuming the
degree  is in the form of a power of 2, then we can view the univariate polynomial as a multivariate linear
polynomial with  variables. (From [ACFY24b, 1.1 Constrained Reed-Solomon codes])

Let's first give a simple example with , let

 

Let , then  can be represented as:

 

Denote the new multivariate linear polynomial as

 

In this way,  can be viewed as a univariate polynomial, or as a multivariate linear polynomial after variable
substitution .

For univariate polynomials in the RS code , it's similar, they can be viewed from the perspective of
multivariate linear polynomials, i.e.,

 

In the above equation,  is the univariate polynomial, while  is the multivariate linear polynomial
with  variables. The idea used here appears in BaseFold. (From [ACFY24b, 1.1 Constrained Reed-Solomon codes])

Furthermore, consistent with the FRI protocol, folding a univariate polynomial with a random number  can be
equivalently viewed as substituting  for one of the variables in the multivariate linear polynomial.
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For example, for the above , first fold with ,
then

 

The folded polynomial is

 

This is equivalent to directly substituting values and replacing variables in the original multivariate polynomial

, specifically:

1. First, substitute  with , we get

 

2. Let the new variables , and , we get the folded polynomial as

 

We can see that the polynomials obtained by the two folding methods are equivalent, except that  is in the

form of a univariate polynomial, while  is in the form of a multivariate linear polynomial.

If we want to perform a 4-fold on the original polynomial , from the perspective of univariate polynomials, we
can perform a 2-fold on the polynomial  after the 2-fold, i.e.,

 

Folding with a random number , we get the folded polynomial as

 

From the perspective of multivariate linear polynomials, we can perform a 2-fold on the multivariate linear

polynomial  after the 2-fold, i.e.,

1. Substitute  with , we get

 

2. Let the new variable , we get the folded polynomial as

 



We can find that for multiple folds, folding using univariate polynomials and directly folding using multivariate linear
polynomials are equivalent. The process of folding a multivariate linear polynomial with random numbers 

is just the process of direct variable substitution, i.e., we get .

Below we introduce the definition of the folding function given in the paper [ACFY24b], which is consistent with the
folding method in the FRI protocol.

Definition 1 [ACFY24b, Definition 4.14] Let  be a function, . Define  as
follows:

 

To calculate , it's sufficient to query the values of  at  and .

For  and , define , denote , recursively
define:  and .

The following proposition tells us that folding a Reed-Solomon code on any set of points still results in a Reed-
Solomon code. ([ACFY24b])

Proposition 1 [ACFY24b, Claim 4.15] Let  be a function,  represent folding random numbers, let
. If  and , then , and the multilinear extension of 

is , where  is the multilinear extension of .

The  given in the proposition is consistent with the folding of the univariate

polynomial  and the direct folding of the multivariate linear polynomial  with random numbers mentioned above.
From the perspective of multivariate linear polynomials, it is just direct variable substitution with random numbers

, i.e., .

Recalling the FRI protocol, it continuously folds the univariate polynomial  with random numbers 
until finally obtaining a constant polynomial. From the perspective of multivariate linear polynomials, we would

eventually get  as a constant. Connecting to the Sumcheck protocol, the last step also requires
obtaining the value of a multivariate polynomial at a certain random point, and the verifier needs to obtain this
value for verification. This step is usually implemented using an oracle. Now the FRI protocol can also provide the

value of  at a random point at the end. If the Sumcheck protocol and the FRI protocol choose the
same random point , then the FRI protocol can directly provide the value needed for the last step of
the Sumcheck protocol when it reaches the end. Combining the FRI protocol and the Sumcheck protocol in this way
is the idea of the BaseFold protocol [ZCF24].

CRS: Constrained Reed-Solomon codes  
Below is the definition of constrained Reed-Solomon codes given in the WHIR paper [ACFY24b]. It is a subset of
Reed-Solomon codes, but with an additional constraint similar to Sumcheck.

Definition 2 [ACFY24b, Definition 1] For a field , smooth evaluation domain , number of variables ,
weight polynomial , and target , the constrained Reed-Solomon code is defined as

 

From the definition, we can see that CRS (constrained Reed-Solomon code) is first a RS code, i.e.,  in
the definition, but on top of this, it needs to satisfy a summation constraint similar to Sumcheck

.



The paper [ACFY24b] mentions that the weight polynomial  in the definition can be defined by oneself and has

wide applications. The paper gives such an example: an evaluation constraint , which constrains the value

of the multivariate polynomial  at point  to be the target value . First, perform a multilinear extension on
 to get

 

where . Therefore, when , if , then
, if , then . Thus

 

The weight polynomial  can be defined as

 

In this way, an evaluation constraint can be represented using the weight polynomial. Based on this, the
corresponding PCS can be constructed (from [ACFY24b, 1.1 Hash-based PCS from CRS codes]), in two cases:

1. Constrain the value of the multivariate linear polynomial  at  to be , let the weight polynomial be

 

2. Constrain the value of a univariate polynomial  at  to be , convert this case to the case of multivariate
linear polynomials, consider the evaluation point as , then the weight polynomial is

 

One Iteration of WHIR  
As mentioned earlier, BaseFold combined the Sumcheck and FRI protocols, while the WHIR protocol combines the
ideas of BaseFold and STIR, replacing the FRI protocol in BaseFold with the STIR protocol. Compared to the FRI
protocol, the STIR protocol has a smaller query complexity. The core idea of the STIR protocol is to reduce the rate of
each iteration, increasing the redundancy in the messages sent by the Prover, thereby reducing the Verifier's query
complexity.

Let's delve into one iteration of the WHIR protocol (from [ACFYb, 2.1.3 WHIR protocol]) to see how WHIR specifically
combines BaseFold and the STIR protocol. After one iteration, the problem of testing the proximity of

 is transformed into testing .

Prover Verifier

1. Sumcheck rounds
claim



2. Send folded function

3. Out-of-domain sample

4. Out-of-domain answers

5. Shift queries and combination randomness

Query f to get

Test

 

.

.

.

.

.

.

6. Recursive claim 

1. Sumcheck rounds. Prover and Verifier interact for  rounds of Sumcheck for the constraint in

 

where  is the multivariate linear polynomial corresponding to .



a. Prover sends a univariate polynomial  to Verifier, Verifier checks

, selects a random number  and sends it, the sumcheck claim becomes

. b. For the -th round,  from  to , Prover sends a univariate

polynomial

 

Verifier checks , selects a random number , the sumcheck claim becomes

 

Therefore, after the above  rounds of sumcheck, prover has sent polynomials , verifier has
selected random numbers . The initial claim becomes the following statement

 

2. Send folded function. Prover sends function . In the case of an honest Prover, ,  is
defined as the evaluation of  on domain .

This means first folding   times with random numbers  to get , at this point ,
with its domain range as . Since  is essentially a polynomial, we can change the domain of its variables to

, the function  is consistent with the evaluation of  on .

3. Out-of-domain sample. Verifier selects a random number  and sends it to Prover. Let
.

4. Out-of-domain answers. Prover sends . In the honest case, .

5. Shift queries and combination randomness. For Verifier, for each , select random numbers 

and send, obtain  by querying . Let . Verifier also selects a
random number  and sends.

6. Recursive claim. Prover and Verifier define new weight polynomial and target value:

 

 

Then, recursively test .

First, let's explain that the constraint in  is correct, i.e., prove

 

Substituting  and , we get

 

We prove this in two parts:



1. Prove

 

From step 2 of the protocol, we know , therefore

 

The last equation is obtained from the final claim of the sumcheck in step 1 of the protocol.

2. Prove

 

Proof:

 

Where  is precisely what we mentioned earlier about using the weight

polynomial  to constrain the value of a multivariate linear polynomial at a certain point.

This also explains that the constraint definition in  is correct.

The definition of the new weight polynomial  is

 

It consists of two parts:

1. The first part  constrains the correctness of  rounds of sumcheck in step 1 of the protocol.

2. The second part  constrains that the values of  at  are correct, and uses random
number  to linearly combine these  constraints. a. The constraint  is actually verifying the
correctness of out-of-domain answers. b. For , the constraint  is requiring the correctness of
shift queries.

This also shows the flexibility of the weight polynomial definition, which can implement multiple constraints at once.

Connection between WHIR and BaseFold  

WHIR adopts the idea of BaseFold, and the definition of CRS itself introduces a constraint similar to sumcheck. In
step 1 of the protocol, it first performs  rounds of sumcheck, where the random numbers 

selected for sumcheck are completely consistent with the random numbers used for folding  later, i.e., in step 2 of

the protocol , where  is folded  times.



Connection between WHIR and STIR  

After using sumcheck in step 1 of the protocol, the subsequent steps 2-5 are similar to the STIR protocol. The
following figure shows one iteration of the STIR protocol.



Prover Verifier

1. Sample folding randomness

2. Send folded function

3. Out-of-domain sample

4. Out-of-domain reply

5. Shift queries

Query f to get

Test f'



The core idea of the STIR protocol is to reduce the rate in each iteration. Specifically, in the next iteration, the folded
polynomial  is not evaluated on , but instead chooses to evaluate on a domain  that is only half the size of
the original domain . This corresponds to step 2 of the WHIR protocol. The benefit of doing this is that it greatly
increases the redundancy of the sent messages, reducing the query complexity of the verifier.

For , its rate is , and after one WHIR iteration

, its rate is

 

When , we can see that  will be smaller than , the rate decreases.

Mutual correlated agreement  
The correlated agreement theorem given in the [BCIKS20] paper is a key theorem for proving the security of FRI and
STIR protocols, which ensures that the process of folding the original function with random numbers in the FRI
protocol or STIR protocol is secure. In the security analysis of WHIR, a new concept of mutual correlated agreement
is introduced, which has a stronger conclusion than correlated agreement.

[ACFYb, 1.2 Mutual correlated agreement] gives the related definitions of correlated agreement and mutual
correlated agreement. A code  has -correlated agreement means: for every ,
under the uniform selection of , with probability : if there exists a set , where 
,  is consistent with  on , then there exists a set , where , each 
is consistent with  on .

In the above definition, describing a function  as "consistent" with a code  on a set  means that there exists a
codeword  in the encoding space such that for any , .

The definition of correlated agreement is shown in the following figure (refer to the video ZK12: WHIR: Reed-
Solomon Proximity Testing with Super-Fast Verification).

https://www.youtube.com/watch?v=iPKzmxLDdII&ab_channel=ZeroKnowledge
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The [BCIKS20] paper shows that a Reed-Solomon code with rate  has -correlated agreement, where

, . In other words, if  and

 

then, there exist sets , and codes  such that

1. 

2. Each  is consistent with  on 

It can be found that the definition of -correlated agreement does not require the sets  and  to be the same
set, while in WHIR, a concept stronger than correlated agreement is introduced, called mutual correlated agreement,
which requires the sets  and  to be the same set. As shown in the following figure (refer to the video ZK12: WHIR:
Reed-Solomon Proximity Testing with Super-Fast Verification):

https://www.youtube.com/watch?v=iPKzmxLDdII&ab_channel=ZeroKnowledge
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The WHIR paper gives the following conjecture about mutual correlated agreement.

Conjecture 1 [ACFY24b, Conjecture 1] (informal). For every Reed-Solomon code , if it has -
correlated agreement, where , then it has -mutual correlated agreement, where

.

The WHIR paper proves that in the case of unique decoding, i.e., when , Conjecture 1 holds with .
This also connects correlated agreement with mutual correlated agreement.

Summary  
The WHIR protocol combines the ideas of BaseFold and STIR. First, for univariate polynomials in RS encoding, they
can be viewed as equivalent multivariate linear polynomials through variable substitution, and the folding of
univariate polynomials is also equivalent to folding the corresponding multivariate linear polynomials. This allows
WHIR to support both univariate polynomials and multivariate linear polynomials.

Secondly, a new CRS encoding definition is given, adding a constraint similar to sumcheck on the basis of RS
encoding, which is a constraint similar to sumcheck on the weight polynomial . The flexibility of the weight
polynomial definition allows multiple constraints to be required at once in the protocol, including constraining the
correctness of sumcheck, the correctness of out-of-domain answers, and the correctness of shift queries.

Then, by delving into one iteration of the WHIR protocol, we can see its connection with BaseFold and STIR protocols.
The key here is still to build a bridge between univariate polynomials and multivariate linear polynomials, allowing

free switching between the univariate function  and the multivariate linear polynomial . Through the introduction
of CRS, the goal of the protocol is increased to verify the correctness of a constraint similar to sumcheck,

 



Therefore, combining the idea of BaseFold, first perform  rounds of sumcheck, replacing  variables in the

multivariate linear polynomial  with the random numbers  from the sumcheck protocol. The folding of  still uses
the same random numbers . Combining the idea of STIR, to reduce the rate, the folded function is evaluated on a
larger domain . The subsequent steps of out-of-domain sample and shift queries in the WHIR protocol are
similar to the STIR protocol.

Finally, we introduced the mutual correlated agreement conclusion used in the security proof of the WHIR protocol,
which is stronger than the correlated agreement conclusion.
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