
Note on WHIR: Reed-Solomon Proximity Testing
with Super-Fast Verification

Jade Xie jade@secbit.io

Yu Guo yu.guo@secbit.io

This article mainly introduces the WHIR (Weights Help Improving Rate) protocol [ACFY24b]. Like the FRI [BBHR18],
STIR [ACFY24a], and BaseFold [ZCF24] protocols, WHIR is also an IOPP protocol, but it has a smaller query complexity
and a faster verification time. The paper [ACFY24b] mentions that WHIR's verifier typically runs in hundreds of
microseconds (1 microsecond = seconds), while other protocols' verifiers take a few milliseconds (1 millisecond
= seconds). Additionally, WHIR is an IOPP protocol for constrained Reed-Solomon codes (CRS), which allows WHIR
to support queries for both multivariate linear polynomials and univariate polynomials, which is why WHIR can be
compared simultaneously with BaseFold, FRI, and STIR [ACFY24b]. Overall, WHIR combines the ideas of BaseFold
and STIR, enabling the WHIR protocol to support multivariate linear polynomials without sacrificing Prover efficiency
and argument size, while also having a smaller query complexity.

From Univariate Polynomials to Multivariate Linear
Polynomials

For a finite field , evaluation domain , and Reed-Solomon encoding of degree , it represents the set of
evaluations of all univariate polynomials over with degree strictly less than on , denoted as .
Assuming is a multiplicative coset of , and its order is a power of 2 (called "smooth"), and also assuming the
degree is in the form of a power of 2, then we can view the univariate polynomial as a multivariate linear
polynomial with variables. (From [ACFY24b, 1.1 Constrained Reed-Solomon codes])

Let's first give a simple example with , let

Let , then can be represented as:

Denote the new multivariate linear polynomial as

In this way, can be viewed as a univariate polynomial, or as a multivariate linear polynomial after variable
substitution .

For univariate polynomials in the RS code , it's similar, they can be viewed from the perspective of
multivariate linear polynomials, i.e.,

In the above equation, is the univariate polynomial, while is the multivariate linear polynomial
with variables. The idea used here appears in BaseFold. (From [ACFY24b, 1.1 Constrained Reed-Solomon codes])

Furthermore, consistent with the FRI protocol, folding a univariate polynomial with a random number can be
equivalently viewed as substituting for one of the variables in the multivariate linear polynomial.

mailto:jade@secbit.io
mailto:yu.guo@secbit.io

For example, for the above , first fold with ,
then

The folded polynomial is

This is equivalent to directly substituting values and replacing variables in the original multivariate polynomial

, specifically:

1. First, substitute with , we get

2. Let the new variables , and , we get the folded polynomial as

We can see that the polynomials obtained by the two folding methods are equivalent, except that is in the

form of a univariate polynomial, while is in the form of a multivariate linear polynomial.

If we want to perform a 4-fold on the original polynomial , from the perspective of univariate polynomials, we
can perform a 2-fold on the polynomial after the 2-fold, i.e.,

Folding with a random number , we get the folded polynomial as

From the perspective of multivariate linear polynomials, we can perform a 2-fold on the multivariate linear

polynomial after the 2-fold, i.e.,

1. Substitute with , we get

2. Let the new variable , we get the folded polynomial as

We can find that for multiple folds, folding using univariate polynomials and directly folding using multivariate linear
polynomials are equivalent. The process of folding a multivariate linear polynomial with random numbers

is just the process of direct variable substitution, i.e., we get .

Below we introduce the definition of the folding function given in the paper [ACFY24b], which is consistent with the
folding method in the FRI protocol.

Definition 1 [ACFY24b, Definition 4.14] Let be a function, . Define as
follows:

To calculate , it's sufficient to query the values of at and .

For and , define , denote , recursively
define: and .

The following proposition tells us that folding a Reed-Solomon code on any set of points still results in a Reed-
Solomon code. ([ACFY24b])

Proposition 1 [ACFY24b, Claim 4.15] Let be a function, represent folding random numbers, let
. If and , then , and the multilinear extension of

is , where is the multilinear extension of .

The given in the proposition is consistent with the folding of the univariate

polynomial and the direct folding of the multivariate linear polynomial with random numbers mentioned above.
From the perspective of multivariate linear polynomials, it is just direct variable substitution with random numbers

, i.e., .

Recalling the FRI protocol, it continuously folds the univariate polynomial with random numbers
until finally obtaining a constant polynomial. From the perspective of multivariate linear polynomials, we would

eventually get as a constant. Connecting to the Sumcheck protocol, the last step also requires
obtaining the value of a multivariate polynomial at a certain random point, and the verifier needs to obtain this
value for verification. This step is usually implemented using an oracle. Now the FRI protocol can also provide the

value of at a random point at the end. If the Sumcheck protocol and the FRI protocol choose the
same random point , then the FRI protocol can directly provide the value needed for the last step of
the Sumcheck protocol when it reaches the end. Combining the FRI protocol and the Sumcheck protocol in this way
is the idea of the BaseFold protocol [ZCF24].

CRS: Constrained Reed-Solomon codes
Below is the definition of constrained Reed-Solomon codes given in the WHIR paper [ACFY24b]. It is a subset of
Reed-Solomon codes, but with an additional constraint similar to Sumcheck.

Definition 2 [ACFY24b, Definition 1] For a field , smooth evaluation domain , number of variables ,
weight polynomial , and target , the constrained Reed-Solomon code is defined as

From the definition, we can see that CRS (constrained Reed-Solomon code) is first a RS code, i.e., in
the definition, but on top of this, it needs to satisfy a summation constraint similar to Sumcheck

.

The paper [ACFY24b] mentions that the weight polynomial in the definition can be defined by oneself and has

wide applications. The paper gives such an example: an evaluation constraint , which constrains the value

of the multivariate polynomial at point to be the target value . First, perform a multilinear extension on
 to get

where . Therefore, when , if , then
, if , then . Thus

The weight polynomial can be defined as

In this way, an evaluation constraint can be represented using the weight polynomial. Based on this, the
corresponding PCS can be constructed (from [ACFY24b, 1.1 Hash-based PCS from CRS codes]), in two cases:

1. Constrain the value of the multivariate linear polynomial at to be , let the weight polynomial be

2. Constrain the value of a univariate polynomial at to be , convert this case to the case of multivariate
linear polynomials, consider the evaluation point as , then the weight polynomial is

One Iteration of WHIR
As mentioned earlier, BaseFold combined the Sumcheck and FRI protocols, while the WHIR protocol combines the
ideas of BaseFold and STIR, replacing the FRI protocol in BaseFold with the STIR protocol. Compared to the FRI
protocol, the STIR protocol has a smaller query complexity. The core idea of the STIR protocol is to reduce the rate of
each iteration, increasing the redundancy in the messages sent by the Prover, thereby reducing the Verifier's query
complexity.

Let's delve into one iteration of the WHIR protocol (from [ACFYb, 2.1.3 WHIR protocol]) to see how WHIR specifically
combines BaseFold and the STIR protocol. After one iteration, the problem of testing the proximity of

 is transformed into testing .

Prover Verifier

1. Sumcheck rounds
claim

2. Send folded function

3. Out-of-domain sample

4. Out-of-domain answers

5. Shift queries and combination randomness

Query f to get

Test

.

.

.

.

.

.

6. Recursive claim

1. Sumcheck rounds. Prover and Verifier interact for rounds of Sumcheck for the constraint in

where is the multivariate linear polynomial corresponding to .

a. Prover sends a univariate polynomial to Verifier, Verifier checks

, selects a random number and sends it, the sumcheck claim becomes

. b. For the -th round, from to , Prover sends a univariate

polynomial

Verifier checks , selects a random number , the sumcheck claim becomes

Therefore, after the above rounds of sumcheck, prover has sent polynomials , verifier has
selected random numbers . The initial claim becomes the following statement

2. Send folded function. Prover sends function . In the case of an honest Prover, , is
defined as the evaluation of on domain .

This means first folding times with random numbers to get , at this point ,
with its domain range as . Since is essentially a polynomial, we can change the domain of its variables to

, the function is consistent with the evaluation of on .

3. Out-of-domain sample. Verifier selects a random number and sends it to Prover. Let
.

4. Out-of-domain answers. Prover sends . In the honest case, .

5. Shift queries and combination randomness. For Verifier, for each , select random numbers

and send, obtain by querying . Let . Verifier also selects a
random number and sends.

6. Recursive claim. Prover and Verifier define new weight polynomial and target value:

Then, recursively test .

First, let's explain that the constraint in is correct, i.e., prove

Substituting and , we get

We prove this in two parts:

1. Prove

From step 2 of the protocol, we know , therefore

The last equation is obtained from the final claim of the sumcheck in step 1 of the protocol.

2. Prove

Proof:

Where is precisely what we mentioned earlier about using the weight

polynomial to constrain the value of a multivariate linear polynomial at a certain point.

This also explains that the constraint definition in is correct.

The definition of the new weight polynomial is

It consists of two parts:

1. The first part constrains the correctness of rounds of sumcheck in step 1 of the protocol.

2. The second part constrains that the values of at are correct, and uses random
number to linearly combine these constraints. a. The constraint is actually verifying the
correctness of out-of-domain answers. b. For , the constraint is requiring the correctness of
shift queries.

This also shows the flexibility of the weight polynomial definition, which can implement multiple constraints at once.

Connection between WHIR and BaseFold

WHIR adopts the idea of BaseFold, and the definition of CRS itself introduces a constraint similar to sumcheck. In
step 1 of the protocol, it first performs rounds of sumcheck, where the random numbers

selected for sumcheck are completely consistent with the random numbers used for folding later, i.e., in step 2 of

the protocol , where is folded times.

Connection between WHIR and STIR

After using sumcheck in step 1 of the protocol, the subsequent steps 2-5 are similar to the STIR protocol. The
following figure shows one iteration of the STIR protocol.

Prover Verifier

1. Sample folding randomness

2. Send folded function

3. Out-of-domain sample

4. Out-of-domain reply

5. Shift queries

Query f to get

Test f'

The core idea of the STIR protocol is to reduce the rate in each iteration. Specifically, in the next iteration, the folded
polynomial is not evaluated on , but instead chooses to evaluate on a domain that is only half the size of
the original domain . This corresponds to step 2 of the WHIR protocol. The benefit of doing this is that it greatly
increases the redundancy of the sent messages, reducing the query complexity of the verifier.

For , its rate is , and after one WHIR iteration

, its rate is

When , we can see that will be smaller than , the rate decreases.

Mutual correlated agreement
The correlated agreement theorem given in the [BCIKS20] paper is a key theorem for proving the security of FRI and
STIR protocols, which ensures that the process of folding the original function with random numbers in the FRI
protocol or STIR protocol is secure. In the security analysis of WHIR, a new concept of mutual correlated agreement
is introduced, which has a stronger conclusion than correlated agreement.

[ACFYb, 1.2 Mutual correlated agreement] gives the related definitions of correlated agreement and mutual
correlated agreement. A code has -correlated agreement means: for every ,
under the uniform selection of , with probability : if there exists a set , where
, is consistent with on , then there exists a set , where , each
is consistent with on .

In the above definition, describing a function as "consistent" with a code on a set means that there exists a
codeword in the encoding space such that for any , .

The definition of correlated agreement is shown in the following figure (refer to the video ZK12: WHIR: Reed-
Solomon Proximity Testing with Super-Fast Verification).

https://www.youtube.com/watch?v=iPKzmxLDdII&ab_channel=ZeroKnowledge

...

...

Random
Linear
Combination

T

S

correlated agreement

The [BCIKS20] paper shows that a Reed-Solomon code with rate has -correlated agreement, where

, . In other words, if and

then, there exist sets , and codes such that

1.

2. Each is consistent with on

It can be found that the definition of -correlated agreement does not require the sets and to be the same
set, while in WHIR, a concept stronger than correlated agreement is introduced, called mutual correlated agreement,
which requires the sets and to be the same set. As shown in the following figure (refer to the video ZK12: WHIR:
Reed-Solomon Proximity Testing with Super-Fast Verification):

https://www.youtube.com/watch?v=iPKzmxLDdII&ab_channel=ZeroKnowledge

...

...

Random
Linear
Combination

SS

mutual correlated agreement

The WHIR paper gives the following conjecture about mutual correlated agreement.

Conjecture 1 [ACFY24b, Conjecture 1] (informal). For every Reed-Solomon code , if it has -
correlated agreement, where , then it has -mutual correlated agreement, where

.

The WHIR paper proves that in the case of unique decoding, i.e., when , Conjecture 1 holds with .
This also connects correlated agreement with mutual correlated agreement.

Summary
The WHIR protocol combines the ideas of BaseFold and STIR. First, for univariate polynomials in RS encoding, they
can be viewed as equivalent multivariate linear polynomials through variable substitution, and the folding of
univariate polynomials is also equivalent to folding the corresponding multivariate linear polynomials. This allows
WHIR to support both univariate polynomials and multivariate linear polynomials.

Secondly, a new CRS encoding definition is given, adding a constraint similar to sumcheck on the basis of RS
encoding, which is a constraint similar to sumcheck on the weight polynomial . The flexibility of the weight
polynomial definition allows multiple constraints to be required at once in the protocol, including constraining the
correctness of sumcheck, the correctness of out-of-domain answers, and the correctness of shift queries.

Then, by delving into one iteration of the WHIR protocol, we can see its connection with BaseFold and STIR protocols.
The key here is still to build a bridge between univariate polynomials and multivariate linear polynomials, allowing

free switching between the univariate function and the multivariate linear polynomial . Through the introduction
of CRS, the goal of the protocol is increased to verify the correctness of a constraint similar to sumcheck,

Therefore, combining the idea of BaseFold, first perform rounds of sumcheck, replacing variables in the

multivariate linear polynomial with the random numbers from the sumcheck protocol. The folding of still uses
the same random numbers . Combining the idea of STIR, to reduce the rate, the folded function is evaluated on a
larger domain . The subsequent steps of out-of-domain sample and shift queries in the WHIR protocol are
similar to the STIR protocol.

Finally, we introduced the mutual correlated agreement conclusion used in the security proof of the WHIR protocol,
which is stronger than the correlated agreement conclusion.

References
[ACFY24a] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "STIR: Reed-Solomon proximity
testing with fewer queries." In Annual International Cryptology Conference, pp. 380-413. Cham: Springer Nature
Switzerland, 2024.

[ACFY24b] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "WHIR: Reed–Solomon Proximity
Testing with Super-Fast Verification." Cryptology ePrint Archive (2024).

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. "Fast Reed–Solomon Interactive
Oracle Proofs of Proximity". In: Proceedings of the 45th International Colloquium on Automata, Languages and
Programming (ICALP), 2018.

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for
Reed–Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science,
pages 900–909, 2020.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. "BaseFold: efficient field-agnostic polynomial commitment
schemes from foldable codes." Annual International Cryptology Conference. Cham: Springer Nature
Switzerland, 2024.

Blog: WHIR: Reed–Solomon Proximity Testing with Super-Fast Verification

video: ZK12: WHIR: Reed-Solomon Proximity Testing with Super-Fast Verification

https://gfenzi.io/papers/whir/
https://www.youtube.com/watch?v=iPKzmxLDdII&ab_channel=ZeroKnowledge

	Note on WHIR: Reed-Solomon Proximity Testing with Super-Fast Verification
	From Univariate Polynomials to Multivariate Linear Polynomials
	CRS: Constrained Reed-Solomon codes
	One Iteration of WHIR
	Connection between WHIR and BaseFold
	Connection between WHIR and STIR

	Mutual correlated agreement
	Summary
	References

