
STIR: Improving Rate to Reduce Query
Complexity

Jade Xie jade@secbit.io

Yu Guo yu.guo@secbit.io

This article is mainly inspired by the blog post STIR: Reed–Solomon Proximity Testing with Fewer Queries by the
authors of the STIR paper and the presentation ZK11: STIR: Reed–Solomon Proximity Testing with Fewer
Queries - Gal Arnon & Giacomo Fenzi, introducing the STIR protocol.

Like FRI, STIR also solves the Reed-Solomon Proximity Testing problem, but compared to FRI, it has lower query
complexity, which reduces the size of the argument and the hash complexity of the Verifier. So how does STIR
achieve this? The answer is in the name itself, STIR stands for Shift To Improve Rate, and the core idea of STIR
is to improve the rate by shifting the evaluation domain in each round. Intuitively, the rate actually
characterizes the proportion of true information contained in the codeword. As the rate decreases, the true
information decreases, corresponding to an increase in redundancy in the codeword, making it easier for the
Verifier to test the proximity of a received message to the encoding space. In other words, the Verifier's testing
ability becomes stronger. This means that the Verifier only needs fewer queries to achieve the target security.
Let's look at how STIR reduces the rate by comparing FRI and STIR.

FRI v.s. STIR
For a finite field , let be the evaluation domain, with size , and let denote the degree bound
(assume both and are powers of 2). Then the Reed-Solomon encoding space contains all
functions such that is consistent with the evaluation of a polynomial of degree strictly less than
on . The rate is .

The goal of the protocol is to solve the Reed-Solomon Proximity Testing problem, where the Verifier can obtain
a function through queries. The Verifier's goal is to query the values of at as few locations as
possible to distinguish which of the following cases belongs to:

1. is a Reed-Solomon codeword, i.e., ;

2. is -far from all codewords in the Reed-Solomon encoding space in relative Hamming
distance, i.e., .

We consider the above Reed-Solomon Proximity Testing problem under the IOPP (Interactive Oracle Proofs of
Proximity) model, where the Verifier can interact with the Prover and obtain the Prover's messages through an
oracle, as shown in the following figure.

mailto:jade@secbit.io
mailto:yu.guo@secbit.io
https://gfenzi.io/papers/stir/
https://eprint.iacr.org/2024/390
https://www.youtube.com/watch?v=OLklJjp8KB4&ab_channel=ZeroKnowledge

Prover Verifier

query

query

.

.

.

After a series of interactions with the Prover, the Verifier has two situations:

If , the Verifier accepts :)

If , the Verifier rejects with high probability :(

We compare the FRI protocol and the STIR protocol in the case of -fold, as shown in the following figure.

Prover Verifier

.

.

.

Prover Verifier

.

.

.

FRI STIR

In the FRI protocol, assume that is obtained by -fold using the random number , where
. Therefore, testing is converted to testing , and

recursively testing . Thus, in the -th round, its rate is

We can see that in each round, the rate remains constant at .

In the STIR protocol, note that is still -folded, but the size of its evaluation domain is not reduced by
times, but by 2 times. At this time, testing is converted to testing . Then in
the -th round, we need to test . Now

If , i.e., , we can see that the rate decreases in each round, which is the key to STIR's reduction
in query complexity. In other words, because the Verifier's testing ability becomes stronger, it only needs fewer
queries to achieve the target security.

When we compile the above IOPP into a SNARK, we need to use the BCS transformation ([BCS16], BCS
transformation), which consists of two steps:

1. Merkle commit the Prover's messages, and when the Verifier wants to query, open these commitments.
This step transforms the IOPP into a succinct interactive argument.

2. Use the Fiat-Shamir transform to convert the succinct interactive argument obtained in the first step into a
non-interactive one.

In the BCS transformation, the IOPP needs to have a strong soundness property called round-by-round
soundness, which requires the IOPP to have a relatively small soundness error in each round, which is a
stronger requirement than requiring the entire IOPP to have a relatively small soundness error. Let's assume
that the bound for the round-by-round soundness error is . Each round can be queried times repeatedly,
and the entire IOPP protocol goes through rounds, so the total query complexity of the entire proof is

. For reaching the Johnson bound, i.e., , we can calculate that

1. The query complexity of FRI is:

2. The query complexity of STIR is:

In the query complexity of STIR, is usually not large, so the first term accounts for a larger

proportion. We can see that it is at the level, while the original FRI is only at the level.

Figure 2 in Section 6.4 of the paper [ACFY24] gives the experimental results comparing FRI and STIR. We can
see that the reduction in query complexity of STIR results in better performance in terms of argument size and
the number of hashes computed by the Verifier compared to FRI. This is understandable, as fewer query
complexity means:

1. A reduction in the overall argument size is obvious.

2. With fewer queries, the Verifier needs to open fewer Merkle commitments, resulting in fewer hash
computations.

Powerful Tools for RS Encoding
Here we first introduce several powerful tools for RS encoding, which can help us understand the specific STIR
protocol construction.

Folding

For a function , given a random number , its -fold function is denoted as
. It is defined as, for each , we can find in satisfying . From

pairs of , we can obtain a unique polynomial of degree less than satisfying , then
is the value of the function . This definition of the Fold function is completely consistent with the
definition of the Fold function in the FRI protocol, and it has two good properties.

The first property is distance preservation.

1. If the function before folding is in , then for any randomly chosen , the folded function
is still an RS code, i.e., .

2. For , if is -far from , then with probability at least over
the choice of random , is -far from .

This property ensures that we can boldly perform folding. If the Prover cheats and provides a function that is -
far from the encoding space, the folded function will still be -far from the corresponding encoding space with
high probability.

The second property is called Local, which means that to obtain the value of the folded function at any point,
we only need to query the values of at points to calculate it, because at this time we can obtain a unique
polynomial of degree less than , and then substitute to calculate , which is the value at that point. At
this time, the Prover does not need to provide an oracle for separately, the Verifier can obtain it by
accessing the oracle of , which reduces the argument size.

Quotienting

For functions and , where , the quotient with respect to function is defined as:

where is the unique polynomial of degree less than satisfying for all .

An important property of this function is Consistency. Assuming and are disjoint (actually they can
intersect, the conclusion will be more complex, see [ACFY24] Lemma 4.4), then

1. If , it is an evaluation of a polynomial of degree less than on , and this polynomial is
consistent with on , then .

2. If for any polynomial of degree less than that is -close to , is not completely consistent with on
, i.e., for some , , then is -far from .

codeword

Regarding point 2 above, for codewords within range of , the set of these codewords is denoted as
. For any , as long as there is a point on where , the distance of

the quotient polynomial is amplified and becomes -far. In other words, if an incorrect
value is divided here, the quotient polynomial becomes very far from the RS encoding space of
low-degree polynomials.

Note that here we require that for any , is inconsistent with on . Using the Out of
Domain Sampling method, we can limit the codewords within range of to at most one with high probability,
which makes it easier for the Verifier to detect. We will discuss this method in detail in the next section.

The function can help us add constraints on the function . For example, if we want to restrict the
value of at point to be , we can achieve this through , where , i.e.,

Then we just need to prove . If the provided by the Prover does not
have a value of at point , i.e., , then , which will cause to be -far
from , making it easy for the Verifier to detect. Here we only added one constraint, of course
we can add multiple constraints, so we can add constraints to while converting the test of to testing
whether the function is -close to the corresponding RS encoding space.

The function, like the folding function, has the Local property. To calculate the value of the
 function at a point , it can be calculated by querying the value of function at point .

Out of Domain Sampling

Out of Domain Sampling is a powerful tool that can help us limit the number of codewords within range of
the function provided by the Prover, thus converting List Decoding to Unique Decoding.

Generally, for a function , the Verifier randomly selects a number from outside the
domain , and the Prover returns a value . Then in the list of codewords within range of ,
with high probability, there is at most one codeword satisfying .

codeword

at most one codeword

This can be explained using the fundamental theorem of algebra. We only need to prove that the probability of
two different codewords and in having the same value at point is relatively small, which
implies that with high probability, there is at most one codeword satisfying .

First, fix two different codewords and . Since they are different codewords and both have degree less than
, by the fundamental theorem of algebra, we have

Suppose is list-decodable, meaning that there are at most codewords within range. Then
there are ways to choose two different codewords and . Therefore, the probability of any two different
codewords and having the same value at point does not exceed . This probability is very

small, thus proving the point.

How to restrict that the sent by the Prover is really the value of at point ? This can be achieved using the
Quotient tool introduced in the previous section.

Deep Dive into One Iteration of the STIR Protocol
In this section, we will apply the three tools mentioned earlier to delve into one iteration of the STIR protocol.

Objective:

Initially given a function , we want to prove that it is in , where .

After one iteration, prove that function , where .

That is, function is -folded, its degree is reduced to , but the size of the evaluation domain of function
 after one iteration is not reduced by times, but by 2 times. This is the core idea of the STIR protocol

mentioned earlier, reducing query complexity by improving the rate.

Regarding the evaluation domains and , here's an example to illustrate. Suppose
.

The constructed in this way is half the size of , but actually can also satisfy the requirement of
halving. Why not choose ? Suppose we perform folds, we can ensure that and

 are disjoint. The advantage of doing this is to avoid constructing the function
defined by the intersection points in , so the Verifier doesn't need to additionally check if the function
values of are correct (as explained in [ACFY24] Remark 5.3).

The protocol flow for one iteration is shown in the following figure:

Prover Verifier

1. Sample folding randomness

2. Send folded function

3. Out-of-domain sample

4. Out-of-domain reply

5. Shift queries

Query f to get

Test f'

1. Sample folding randomness: The Verifier first randomly selects a number from , which will be used
to fold function .

2. Send folded function: The Prover sends the folded function . If the Prover is honest, then
function is the evaluation of polynomial on . Here, evaluation means that is completely consistent
with on , and polynomial is obtained through . First, use the random number to
perform -fold on function , obtaining . At this time, the range of the folded
function is , but we want it to take values on . We just need to extend the domain of to

, obtaining polynomial , which has degree less than .

3. Out-of-domain sample: The Verifier takes a random number from and sends it to the Prover.

4. Out-of-domain reply: The Prover replies with . If the Prover is honest, then .

 Notes The purpose of steps 3 and 4 here is to use Out of Domain Sampling to convert list decoding to
unique decoding, that is, the Verifier selects a random number from and requires the Prover to
reply with .

5. Shift queries: The Verifier selects random numbers from , i.e., . According to
the Local property of the folding function, the Verifier can calculate by querying ,
where .

In step 2, the Prover sent and claims that it is consistent with on , but the Verifier
cannot directly query the values of the folded function on . The Verifier can only calculate the values of

 on by querying . Fortunately, we can use the Quotient tool here to ensure consistency.

In steps 3 and 4, the Out-of-domain Sampling method is first used to limit the number of codewords within
range of to at most one, denoted as . Then in step 5, query the values of on , which is
convenient for subsequent verification of whether is consistent with the folded function on . The
verification of consistency is left to the Quotient function.

Let's form a set of all these points that need to ensure consistency, and then
define a function that satisfies:

Define the next function as

Due to the Local property of the Quotient function, to calculate the values of on , we only need to query
the values of on .

At this point, we just need to test whether is -close to .

Looking closely at the formula for , we can see that if the Prover is honest, . There
is actually a reduction in the degree of the polynomial here, and degree correction is needed to correct the
degree of to . This point will be discussed in the following text.

Soundness Analysis
In this section, we will perform a soundness analysis for one iteration, that is, if the Prover cheats and is -far
from , we analyze the probability that is also relatively far from . [ACFY24]
Lemma 1 gives the following conclusion:

Proposition 1 [ACFY24, Lemma 1] If is -far from , then except with probability
, is (approximately) -far from .

Proof idea:

1. According to the distance-preserving property of the folding function, the function
obtained after folding with the random number is -far from with probability
greater than .

2. According to the property of Out-of-domain Sampling, the probability that has at most one codeword
within range satisfying is greater than .

Now let's analyze point 2. The function , now consider its distance from the encoding space
. According to the Johnson bound, is -list-decodable, where ,

, which means there are at most polynomials of degree less than that are
not more than away from . Then for any two different polynomials and chosen from these
polynomials, when randomly selecting from , the probability that their values at point are both

equal to does not exceed . There are ways to choose these two polynomials, so this probability

does not exceed

Therefore, the probability that has at most one codeword within range satisfying is
greater than .

If both item 1 and item 2 hold, this probability is greater than . Now we only need to prove
that the probability that is (approximately) -far from is at least

.

Let's discuss two cases:

If there is no codeword satisfying the requirement in item 2, that is, there is no codeword satisfying
 within range of , and according to the construction of the protocol, .

Therefore, for any codeword within range of , we have . Since

According to the consistency of the Quotient function, at this time and are not completely consistent
on , so is -far from .

If there exists a codeword satisfying the requirement in item 2, there is already a codeword satisfying
 within range of . According to

Now is already satisfied. If for all , we have , then
 is not more than -far from . Otherwise,

according to the consistency of the Quotient function, as long as for some we have , at this
time , it will cause to be -far from .

Since item 1 holds, we have for the folded function, so

Therefore, the probability that is (approximately) -far from is at least
.

Thus, Proposition 1 is proved.

In fact, the round-by-round soundness error of the protocol is approximately .

Degree correction
Now there's a small problem left to solve. According to the definition of function

We can see that, strictly speaking, this converts the test of to testing the distance of from
, rather than , which requires degree correction.

Generally, let's assume that the function we want to perform degree correction on is , its initial
degree is , and the target corrected degree is . We want to construct an efficient degree correction
algorithm that can output a function satisfying:

1. If , then .

2. If is -far from , then with high probability, is also -far from .

3. Queries to can be efficiently computed through queries to .

The STIR paper ([ACFY24], Section 2.3) proposes a method that not only satisfies the above three conditions but
also uses the method of summing geometric series to make the calculation in item 3 more efficient.

The method is to randomly sample an element from the field and define

where , . Expanding equation (1), we get

According to the construction of , item 1 naturally holds.

For , item 2 also holds. This can be obtained from the Correlated
Agreement theorem in [BCIKS20], which we won't elaborate on here.

Next, let's analyze item 3. From equation (2), we can see that to calculate the value of at point , after
querying the value of , we need to sum terms, which takes time. If , this is inefficient,
but by using the method of summing geometric series, we can reduce the computational complexity to

.

Using the geometric series sum formula for , we can get

For the more complex , the term can be calculated using the repeated squaring
method, which takes calculations. Then by querying the value of at point to get , it takes

 operations in total to calculate .

This method can be extended to multiple functions of different degrees. For functions
and degrees , we want to perform batch-degree-correction, finally obtaining a function with
degree . Randomly sample a random number , define and

Similar to the degree correction of a single function above, for , if any
 is -far from , then is -far from . Similarly, using the method of summing

geometric series, by querying , it takes operations to calculate the
value of at point .

Summary
STIR changes the evaluation domain of the function in each round, changing the original in the FRI protocol
to . The function is still -folded, but is only half the size of the original. This reduces the rate of the
encoding space, which can reduce the number of queries by the Verifier, and this is the core idea of STIR.

In the construction of the STIR protocol, several powerful tools for RS encoding are used, making the entire
protocol efficient and secure.

1. First, consistent with the FRI protocol, the function is -folded, but the resulting function needs to
extend its evaluation domain from to . According to the distance-preserving property of the folding
function, we can confidently perform this folding.

2. Then, to reduce the Verifier's work, the Out of Domain Sampling method is used to convert list decoding
to unique decoding. This is where the Verifier selects a random number from and requires the
Prover to reply with in the protocol.

3. At this point, after changing the evaluation domain to , the problem faced is that the Verifier can only
query the values of the -folded function on . Fortunately, the powerful Quotient tool can be used
to constrain the function sent by the Prover to be consistent with the folded function on . At this time,
the Verifier selects random numbers from for querying.

4. Finally, combine and , and use the Quotient tool to constrain the values sent by the Prover at
these points to be correct.

Combining these tools, a soundness analysis of one iteration of the STIR protocol was performed. In fact, we

can obtain that the round-by-round soundness error of STIR is .

Finally, to raise the degree of after iteration from to , a degree correction method using
geometric series summation that can be efficiently calculated was introduced.

References
[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "STIR: Reed-Solomon proximity
testing with fewer queries." In Annual International Cryptology Conference, pp. 380-413. Cham: Springer
Nature Switzerland, 2024.

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
Gaps for Reed–Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of
Computer Science, pages 900–909, 2020.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. "Interactive Oracle Proofs". In:
Proceedings of the 14th Theory of Cryptography Conference. TCC '16-B. 2016, pp. 31–60.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. "DEEP-FRI: Sampling
Outside the Box Improves Soundness". In: Proceedings of the 11th Innovations in Theoretical Computer
Science Conference. ITCS '20. 2020, 5:1–5:32.

STIR: Reed–Solomon Proximity Testing with Fewer Queries

Video: ZK11: STIR: Reed–Solomon Proximity Testing with Fewer Queries - Gal Arnon & Giacomo Fenzi

https://gfenzi.io/papers/stir/
https://www.youtube.com/watch?v=OLklJjp8KB4&ab_channel=ZeroKnowledge

	STIR: Improving Rate to Reduce Query Complexity
	FRI v.s. STIR
	Powerful Tools for RS Encoding
	Folding
	Quotienting
	Out of Domain Sampling

	Deep Dive into One Iteration of the STIR Protocol
	Soundness Analysis
	Degree correction
	Summary
	References

