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This article is mainly inspired by the blog post STIR: Reed–Solomon Proximity Testing with Fewer Queries by the
authors of the STIR paper and the presentation ZK11: STIR: Reed–Solomon Proximity Testing with Fewer
Queries - Gal Arnon & Giacomo Fenzi, introducing the STIR protocol.

Like FRI, STIR also solves the Reed-Solomon Proximity Testing problem, but compared to FRI, it has lower query
complexity, which reduces the size of the argument and the hash complexity of the Verifier. So how does STIR
achieve this? The answer is in the name itself, STIR stands for Shift To Improve Rate, and the core idea of STIR
is to improve the rate by shifting the evaluation domain in each round. Intuitively, the rate actually
characterizes the proportion of true information contained in the codeword. As the rate decreases, the true
information decreases, corresponding to an increase in redundancy in the codeword, making it easier for the
Verifier to test the proximity of a received message to the encoding space. In other words, the Verifier's testing
ability becomes stronger. This means that the Verifier only needs fewer queries to achieve the target security.
Let's look at how STIR reduces the rate by comparing FRI and STIR.

FRI v.s. STIR  
For a finite field , let  be the evaluation domain, with size , and let  denote the degree bound
(assume both  and  are powers of 2). Then the Reed-Solomon encoding space  contains all
functions  such that  is consistent with the evaluation of a polynomial of degree strictly less than 
on . The rate is .

The goal of the protocol is to solve the Reed-Solomon Proximity Testing problem, where the Verifier can obtain
a function  through queries. The Verifier's goal is to query the values of  at as few locations as
possible to distinguish which of the following cases  belongs to:

1.  is a Reed-Solomon codeword, i.e., ;

2.  is -far from all codewords in the Reed-Solomon encoding space  in relative Hamming
distance, i.e., .

We consider the above Reed-Solomon Proximity Testing problem under the IOPP (Interactive Oracle Proofs of
Proximity) model, where the Verifier can interact with the Prover and obtain the Prover's messages through an
oracle, as shown in the following figure.
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After a series of interactions with the Prover, the Verifier has two situations:

If , the Verifier accepts :)

If , the Verifier rejects with high probability :(

We compare the FRI protocol and the STIR protocol in the case of -fold, as shown in the following figure.
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FRI STIR

In the FRI protocol, assume that  is obtained by -fold using the random number , where
. Therefore, testing  is converted to testing , and

recursively testing . Thus, in the -th round, its rate is

 

We can see that in each round, the rate  remains constant at .

In the STIR protocol, note that  is still -folded, but the size of its evaluation domain  is not reduced by 
times, but by 2 times. At this time, testing  is converted to testing . Then in
the -th round, we need to test . Now

 

If , i.e., , we can see that the rate  decreases in each round, which is the key to STIR's reduction
in query complexity. In other words, because the Verifier's testing ability becomes stronger, it only needs fewer
queries to achieve the target security.

When we compile the above IOPP into a SNARK, we need to use the BCS transformation ([BCS16], BCS
transformation), which consists of two steps:

1. Merkle commit the Prover's messages, and when the Verifier wants to query, open these commitments.
This step transforms the IOPP into a succinct interactive argument.

2. Use the Fiat-Shamir transform to convert the succinct interactive argument obtained in the first step into a
non-interactive one.



In the BCS transformation, the IOPP needs to have a strong soundness property called round-by-round
soundness, which requires the IOPP to have a relatively small soundness error in each round, which is a
stronger requirement than requiring the entire IOPP to have a relatively small soundness error. Let's assume
that the bound for the round-by-round soundness error is . Each round can be queried  times repeatedly,
and the entire IOPP protocol goes through  rounds, so the total query complexity of the entire proof is

. For  reaching the Johnson bound, i.e., , we can calculate that

1. The query complexity of FRI is:

 

2. The query complexity of STIR is:

 

In the query complexity of STIR,  is usually not large, so the first term  accounts for a larger

proportion. We can see that it is at the  level, while the original FRI is only at the  level.

Figure 2 in Section 6.4 of the paper [ACFY24] gives the experimental results comparing FRI and STIR. We can
see that the reduction in query complexity of STIR results in better performance in terms of argument size and
the number of hashes computed by the Verifier compared to FRI. This is understandable, as fewer query
complexity means:

1. A reduction in the overall argument size is obvious.

2. With fewer queries, the Verifier needs to open fewer Merkle commitments, resulting in fewer hash
computations.



Powerful Tools for RS Encoding  
Here we first introduce several powerful tools for RS encoding, which can help us understand the specific STIR
protocol construction.

Folding  

For a function , given a random number , its -fold function is denoted as
. It is defined as, for each , we can find   in  satisfying . From 

pairs of , we can obtain a unique polynomial  of degree less than  satisfying , then 
is the value of the function . This definition of the Fold function is completely consistent with the
definition of the Fold function in the FRI protocol, and it has two good properties.

The first property is distance preservation.

1. If the function  before folding is in , then for any randomly chosen , the folded function
is still an RS code, i.e., .

2. For , if  is -far from , then with probability at least  over
the choice of random ,  is -far from .

This property ensures that we can boldly perform folding. If the Prover cheats and provides a function that is -
far from the encoding space, the folded function will still be -far from the corresponding encoding space with
high probability.

The second property is called Local, which means that to obtain the value of the folded function at any point,
we only need to query the values of  at  points to calculate it, because at this time we can obtain a unique
polynomial  of degree less than , and then substitute  to calculate , which is the value at that point. At
this time, the Prover does not need to provide an oracle for  separately, the Verifier can obtain it by
accessing the oracle of , which reduces the argument size.

Quotienting  

For functions  and , where , the quotient with respect to function  is defined as:

 

where  is the unique polynomial of degree less than  satisfying  for all .

An important property of this function is Consistency. Assuming  and  are disjoint (actually they can
intersect, the conclusion will be more complex, see [ACFY24] Lemma 4.4), then

1. If , it is an evaluation of a polynomial of degree less than  on , and this polynomial is
consistent with  on , then .

2. If for any polynomial  of degree less than  that is -close to ,  is not completely consistent with  on 
, i.e., for some , , then  is -far from .



codeword

Regarding point 2 above, for codewords  within  range of , the set of these codewords is denoted as
. For any , as long as there is a point on  where , the distance of

the quotient polynomial  is amplified and becomes -far. In other words, if an incorrect
value  is divided here, the quotient polynomial becomes very far from the RS encoding space of
low-degree polynomials.

Note that here we require that for any ,  is inconsistent with  on . Using the Out of
Domain Sampling method, we can limit the codewords within  range of  to at most one with high probability,
which makes it easier for the Verifier to detect. We will discuss this method in detail in the next section.

The  function can help us add constraints on the function . For example, if we want to restrict the
value of  at point  to be , we can achieve this through , where , i.e.,

 

Then we just need to prove . If the  provided by the Prover does not
have a value of  at point , i.e., , then , which will cause  to be -far
from , making it easy for the Verifier to detect. Here we only added one constraint, of course
we can add multiple constraints, so we can add constraints to  while converting the test of  to testing
whether the  function is -close to the corresponding RS encoding space.

The  function, like the folding function, has the Local property. To calculate the value of the
 function at a point , it can be calculated by querying the value of function  at point .

Out of Domain Sampling  

Out of Domain Sampling is a powerful tool that can help us limit the number of codewords within  range of
the function  provided by the Prover, thus converting List Decoding to Unique Decoding.

Generally, for a function , the Verifier randomly selects a number  from outside the
domain , and the Prover returns a value . Then in the list of codewords  within  range of ,
with high probability, there is at most one codeword  satisfying .



codeword

at most one codeword

This can be explained using the fundamental theorem of algebra. We only need to prove that the probability of
two different codewords  and  in  having the same value at point  is relatively small, which
implies that with high probability, there is at most one codeword satisfying .

First, fix two different codewords  and . Since they are different codewords and both have degree less than
, by the fundamental theorem of algebra, we have

 

Suppose  is  list-decodable, meaning that there are at most  codewords within  range. Then
there are  ways to choose two different codewords  and . Therefore, the probability of any two different
codewords  and  having the same value at point  does not exceed . This probability is very

small, thus proving the point.

How to restrict that the  sent by the Prover is really the value of  at point ? This can be achieved using the
Quotient tool introduced in the previous section.

Deep Dive into One Iteration of the STIR Protocol  
In this section, we will apply the three tools mentioned earlier to delve into one iteration of the STIR protocol.

Objective:

Initially given a function , we want to prove that it is in , where .

After one iteration, prove that function , where .

That is, function  is -folded, its degree is reduced to , but the size of the evaluation domain  of function
 after one iteration is not reduced by  times, but by 2 times. This is the core idea of the STIR protocol

mentioned earlier, reducing query complexity by improving the rate.

Regarding the evaluation domains  and , here's an example to illustrate. Suppose
.



The  constructed in this way is half the size of , but actually  can also satisfy the requirement of
halving. Why not choose ? Suppose we perform  folds, we can ensure that  and

 are disjoint. The advantage of doing this is to avoid constructing the function 
defined by the intersection points in , so the Verifier doesn't need to additionally check if the function
values of  are correct (as explained in [ACFY24] Remark 5.3).

The protocol flow for one iteration is shown in the following figure:



Prover Verifier

1. Sample folding randomness

2. Send folded function

3. Out-of-domain sample

4. Out-of-domain reply

5. Shift queries

Query f to get

Test f'

1. Sample folding randomness: The Verifier first randomly selects a number  from , which will be used
to fold function .



2. Send folded function: The Prover sends the folded function . If the Prover is honest, then
function  is the evaluation of polynomial  on . Here, evaluation means that  is completely consistent
with  on , and polynomial  is obtained through . First, use the random number  to
perform -fold on function , obtaining . At this time, the range of the folded
function is , but we want it to take values on . We just need to extend the domain of  to

, obtaining polynomial , which has degree less than .

3. Out-of-domain sample: The Verifier takes a random number  from  and sends it to the Prover.

4. Out-of-domain reply: The Prover replies with . If the Prover is honest, then .

 Notes The purpose of steps 3 and 4 here is to use Out of Domain Sampling to convert list decoding to
unique decoding, that is, the Verifier selects a random number  from  and requires the Prover to
reply with .

5. Shift queries: The Verifier selects  random numbers from , i.e., . According to
the Local property of the folding function, the Verifier can calculate  by querying ,
where .

In step 2, the Prover sent  and claims that it is consistent with  on , but the Verifier
cannot directly query the values of the folded function on . The Verifier can only calculate the values of

 on  by querying . Fortunately, we can use the Quotient tool here to ensure consistency.

In steps 3 and 4, the Out-of-domain Sampling method is first used to limit the number of codewords within 
range of  to at most one, denoted as . Then in step 5, query the values of  on , which is
convenient for subsequent verification of whether  is consistent with the folded function on . The
verification of consistency is left to the Quotient function.

Let's form a set  of all these points that need to ensure consistency, and then
define a function  that satisfies:

 

 

Define the next function  as

 

Due to the Local property of the Quotient function, to calculate the values of  on , we only need to query
the values of  on .

At this point, we just need to test whether  is -close to .

Looking closely at the formula for , we can see that if the Prover is honest, . There
is actually a reduction in the degree of the polynomial here, and degree correction is needed to correct the
degree of  to . This point will be discussed in the following text.

Soundness Analysis  
In this section, we will perform a soundness analysis for one iteration, that is, if the Prover cheats and  is -far
from , we analyze the probability that  is also relatively far from . [ACFY24]
Lemma 1 gives the following conclusion:



Proposition 1 [ACFY24, Lemma 1] If  is -far from , then except with probability
,  is (approximately) -far from .

Proof idea:

1. According to the distance-preserving property of the folding function, the function 
obtained after folding  with the random number  is -far from  with probability
greater than .

2. According to the property of Out-of-domain Sampling, the probability that  has at most one codeword 
within  range satisfying  is greater than .

Now let's analyze point 2. The function , now consider its distance from the encoding space
. According to the Johnson bound,  is -list-decodable, where ,

, which means there are at most  polynomials of degree less than  that are
not more than  away from . Then for any two different polynomials  and  chosen from these 
polynomials, when randomly selecting  from , the probability that their values at point  are both

equal to  does not exceed . There are  ways to choose these two polynomials, so this probability

does not exceed

 

Therefore, the probability that  has at most one codeword  within  range satisfying  is
greater than .

If both item 1 and item 2 hold, this probability is greater than . Now we only need to prove
that the probability that  is (approximately) -far from  is at least

.

Let's discuss two cases:

If there is no codeword satisfying the requirement in item 2, that is, there is no codeword satisfying
 within  range of , and according to the construction of the protocol, .

Therefore, for any codeword within  range of , we have . Since

 

According to the consistency of the Quotient function, at this time  and  are not completely consistent
on , so  is -far from .

If there exists a codeword  satisfying the requirement in item 2, there is already a codeword satisfying
 within  range of . According to

 

Now  is already satisfied. If for all , we have , then
 is not more than -far from . Otherwise,

according to the consistency of the Quotient function, as long as for some  we have , at this
time , it will cause  to be -far from .

Since item 1 holds, we have  for the folded function, so



 

Therefore, the probability that  is (approximately) -far from  is at least
.

Thus, Proposition 1 is proved.

In fact, the round-by-round soundness error of the protocol is approximately .

Degree correction  
Now there's a small problem left to solve. According to the definition of function 

 

We can see that, strictly speaking, this converts the test of  to testing the distance of  from
, rather than , which requires degree correction.

Generally, let's assume that the function we want to perform degree correction on is , its initial
degree is , and the target corrected degree is . We want to construct an efficient degree correction
algorithm that can output a function  satisfying:

1. If , then .

2. If  is -far from , then with high probability,  is also -far from .

3. Queries to  can be efficiently computed through queries to .

The STIR paper ([ACFY24], Section 2.3) proposes a method that not only satisfies the above three conditions but
also uses the method of summing geometric series to make the calculation in item 3 more efficient.

The method is to randomly sample an element  from the field and define

 

where , . Expanding equation (1), we get

 

According to the construction of , item 1 naturally holds.

For , item 2 also holds. This can be obtained from the Correlated
Agreement theorem in [BCIKS20], which we won't elaborate on here.

Next, let's analyze item 3. From equation (2), we can see that to calculate the value of  at point , after
querying the value of , we need to sum  terms, which takes  time. If , this is inefficient,
but by using the method of summing geometric series, we can reduce the computational complexity to

.

 



Using the geometric series sum formula for , we can get

 

For the more complex , the term  can be calculated using the repeated squaring
method, which takes  calculations. Then by querying the value of  at point  to get , it takes

 operations in total to calculate .

This method can be extended to multiple functions of different degrees. For  functions 
and degrees , we want to perform batch-degree-correction, finally obtaining a function  with
degree . Randomly sample a random number , define  and

 

Similar to the degree correction of a single function above, for , if any
 is -far from , then  is -far from . Similarly, using the method of summing

geometric series, by querying , it takes  operations to calculate the
value of  at point .

Summary  
STIR changes the evaluation domain of the function in each round, changing the original  in the FRI protocol
to . The function is still -folded, but  is only half the size of the original. This reduces the rate of the
encoding space, which can reduce the number of queries by the Verifier, and this is the core idea of STIR.

In the construction of the STIR protocol, several powerful tools for RS encoding are used, making the entire
protocol efficient and secure.

1. First, consistent with the FRI protocol, the function  is -folded, but the resulting function needs to
extend its evaluation domain from  to . According to the distance-preserving property of the folding
function, we can confidently perform this folding.

2. Then, to reduce the Verifier's work, the Out of Domain Sampling method is used to convert list decoding
to unique decoding. This is where the Verifier selects a random number  from  and requires the
Prover to reply with  in the protocol.

3. At this point, after changing the evaluation domain to , the problem faced is that the Verifier can only
query the values of the -folded function  on . Fortunately, the powerful Quotient tool can be used
to constrain the function sent by the Prover to be consistent with the folded function on . At this time,
the Verifier selects  random numbers  from  for querying.

4. Finally, combine  and , and use the Quotient tool to constrain the values sent by the Prover at
these points to be correct.



Combining these tools, a soundness analysis of one iteration of the STIR protocol was performed. In fact, we

can obtain that the round-by-round soundness error of STIR is .

Finally, to raise the degree of  after iteration from  to , a degree correction method using
geometric series summation that can be efficiently calculated was introduced.
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