
Proximity Gaps and Correlated Agreement:
The Core of FRI Security Proof

Jade Xie jade@secbit.io

Yu Guo yu.guo@secbit.io

This article is mainly inspired by the video Proximity Gaps & Applications to Succinct Proofs, combined with
the paper [BCIKS20], introducing the concept of Proximity Gaps and the closely related Correlated
Agreement theorem, which play a very important role in the security proof of FRI.

In the FRI protocol, for a polynomial , let , which is
a polynomial of degree less than , evaluated on the domain , where , then .
The Prover wants to prove to the Verifier that the degree of is indeed less than . If ,
the Verifier outputs accept , if is far from the corresponding code space , it outputs
reject . What the Verifier can obtain is the oracle about a series of functions, and what the FRI protocol
wants to achieve is that the Verifier queries the oracle as little as possible and can distinguish which of the
above situations belongs to.

Let's assume is even, then

We can find that the functions

Initially, the Prover wants to prove to the Verifier that the degree of is less than , now it can be
decomposed into three sub-problems:

1. Prove that the degree of function is less than , i.e.,

2. Prove that the degree of function is less than , i.e.,

3. Prove that

where . The third item is to prove that the odd-even splitting is correct. Similarly, and
 can be decomposed into odd and even terms like , decomposing them into two polynomials of

degree less than , so we need to prove that 4 polynomials are of degree less than , until finally
decomposing to prove constant polynomials. This process is shown in the figure below, and we can see that
the polynomials to be proved are growing in the form of powers of 2. In this process, in order to prove that
the odd-even splitting is not problematic, we need to send oracles about all these polynomials to the
Verifier, and we can imagine that there are too many polynomials being sent, which grow explosively as
increases.

mailto:jade@secbit.io
mailto:yu.guo@secbit.io
https://www.youtube.com/watch?v=8AMiZdWA1eM

degree < k <k/2 <k/4 <k/8

...

Since our purpose is to prove that the degree of the polynomial is less than a certain number, our idea is
that we don't want to split the problem of like above, splitting it into two polynomials, we want to
prove in the next step that a polynomial is of degree less than , which can greatly reduce the number of
polynomials sent. How to do this? We can ask the Verifier for a random number , make a linear
combination of and , get , and decompose the problem of being of degree
less than into:

1. The degree of is less than , i.e.,

At this time, the graph of the polynomials to be sent becomes like the figure below, and you can see that the
oracle of the polynomials to be sent is greatly reduced.

+r

...

+r' +r''

degree < k <k/2 <k/4 <k/8

Now the remaining question is, is this equivalent to the original method? Of course, if the Prover is honest,
according to the linearity of RS encoding, , then their linear combination is
still in . But what if the Prover cheats? For example, if is far from the code space

, we hope that after the linear combination with the random number , is
still far, so that the Verifier can discover the Prover's cheating. What we don't want is that the folded

 becomes closer to the corresponding code space. Proximity Gaps tells us that the
probability of this happening is very small, like winning the lottery, so we can boldly use random numbers

for folding.

Proximity Gaps
Above we considered the case of folding two polynomials, in practice we will use random numbers to fold
multiple times or batch multiple polynomials. Here let's consider the general case, assuming there are
vectors , for each , it can be seen as a polynomial on , or as a vector of

dimension . Make a linear combination of these vectors, denoted as ,
where is an affine space in , and let the code space be .

We are concerned about the distance relationship between elements in and the code space . As shown
in the figure below, represent all codes in the code space as points, draw a sphere with these points as
the center and as the radius. The space formed by is represented by a two-dimensional plane. If the
elements in have a relative Hamming distance less than or equal to from some codes in , it means
that they intersect with some Hamming balls in the figure, and all these intersections combined form the
green shaded area in the figure. In other words, for each element in the shaded area , there must
exist a , such that .

A

affine space

code
Hamming ball

shadowed region

Let's form a set consisting of all affine spaces in . The Proximity Gaps conclusion [BCIKS20,
Theorem 1.2] tells us that for any (such as), either all elements in
are in the shaded area, or only a very small part of the elements in are in the shaded area. It's impossible
to say that half of the elements in are in the shaded area while the other half are not. Expressed in
formula, it can only conform to one of the following two situations:

1.

2.

We call the proximity parameter, and the error parameter, which is a very small number. Of course,
there is a specific expression for , which is related to , that is, , where represents
the code rate, .

So what does the shaded area here represent? What is the relationship between this conclusion and the
security analysis of FRI? Let's analyze the application of the Proximity Gaps conclusion for the cases of
honest Prover and cheating Prover.

Honest Prover

If it's an honest Prover, then for each vector in , we have .

A = span .
.
.

.

.

.

random linear combination

Due to the linearity of RS encoding, we know that after linear combination, it must still be in the code space
, so . At this time, all elements in are in , so when the Verifier makes a random linear

combination and arbitrarily selects a point , they will always get , and the Verifier will definitely
accept. This situation corresponds to the second case in Proximity Gaps, taking , at this time

Malicious Prover

If the Prover cheats, suppose one vector in the vectors sent by the Prover to the
Verifier is far from , that is

Then in , take , we must have

At this time, according to the Proximity Gaps conclusion, there is already an element in that is not in the
shaded area, so the case is excluded, and it can only be

. This also means that even if only one of the vectors is far from the
corresponding code space, most elements in are far from . In other words, a point randomly
selected from can represent the farthest distance from among the vectors.

Now the Verifier randomly selects a point to check whether is greater than . Two situations
will occur. One is that it falls into the shaded area in the figure, and the other is that it falls outside the
shaded area.

Affine space A

shadowed region
very very small

random choose one point a

a

prover is very lucky
a

Case 1: . At this time, the point selected by the Verifier is in the shaded area. We say that the
Prover is very lucky at this time. Although the Prover provided an incorrect witness, which is far from the
code space, after random linear combination, it becomes close to the code space, and at this time, the
Prover can successfully deceive the Verifier. The occurrence of this situation is not good for the Verifier, but
fortunately, the Proximity Gaps conclusion tells us that , which means that the
probability of randomly choosing a point that can enter the shaded area is very, very small. The Prover
needs to be as lucky as winning the lottery, that is, at this time, the probability that the Prover can
successfully deceive the Verifier will not exceed .

Case 2: . At this time, the point selected by the Verifier is outside the shaded area. Can the
Prover still succeed in cheating? There is still a chance, because the Verifier received the oracle about , but
will not check all the values in , only wants to query some values to see if it is in . If the Verifier only
queries once, since , more than proportion of the components in are not equal to the
corresponding components of , at this time the Verifier has a probability greater than to catch the Prover
cheating, which means that at this time the probability that the Prover can cheat successfully does not
exceed .

a[0] a[1] a[2] ... a[n-1]

v[0] v[1] v[2] ... v[n-1]

a

v

=? =? =? =? =?

Verifier choose one to check

If the Verifier repeats the query times, the probability that the Prover can cheat successfully will not
exceed .

So, the probability that a cheating Prover can succeed is the joint probability of the above two cases, that is,
it will not exceed

The above analysis is actually the general idea of the soundness analysis of the FRI protocol. In the paper,
the occurrence of case 1 is called the occurrence of some "bad" events, and then assuming that the "bad"
events did not occur, estimate the probability of case 2, and finally combine the two for analysis.

We know that the FRI protocol is divided into two stages, one is the Commit stage and the other is the
Query stage. We can correspond the above two cases to these two stages:

1. The above case 1 occurs in the Commit stage, where the Verifier will select random numbers to let the
Prover fold the polynomials.

2. The above case 2 corresponds to the Query stage, where the Verifier will randomly select some points
for query checks.

If it's a batched version of the FRI protocol, to prove multiple polynomials are all
polynomials of degree less than , we can first use random numbers for aggregation,
obtaining

Then apply the general FRI protocol to to prove that it is a polynomial of degree less than . The
soundness analysis here also corresponds to the above case 1, that is, there may exist a situation where
due to the selection of random numbers, is no longer far from the corresponding RS code space.

Impact of Increasing
Let's analyze what impact the increase of the proximity parameter will bring. We have already analyzed
that the probability of a cheating Prover successfully deceiving the Verifier does not exceed

This probability consists of two parts, the increase of will lead to:

+

malicious Prover Verifiersoundness

happy :) sad:(

happy :)sad:(

1. . From a graphical understanding, controls the radius of each Hamming ball. If increases, then
the Hamming balls become larger, and their intersection with the affine space should be larger,
which means the shaded area increases, which implies that will increase.

This is good news for the cheating Prover :). Because at this time, the Prover becomes luckier than
before, with a greater probability of entering the green shaded area, and can successfully deceive
the Verifier.

Naturally, this is bad news for the Verifier :(.

2. . This expression is directly related to , if increases, then will decrease.

This is bad news for the cheating Prover :(. Because at this time, the probability of the Prover's
successful cheating will decrease.

This is good news for the Verifier :). At this time, there is a greater probability of catching the
Prover cheating. Under the same security requirements, the Verifier only needs fewer rounds of
polling to meet the requirements.

It can be seen that the increase of causes to increase and to decrease. In practice, is very
small, and accounts for a larger proportion in the whole sum, so the overall will still decrease,
which means that for the entire FRI protocol, the soundness decreases, indicating that it will be more
secure.

The above analysis is from the perspective of soundness. The video Proximity Gaps & Applications to
Succinct Proofs also mentions a point that the increase of will make the corresponding Correlated
Agreement related conclusions weaker. Correlated Agreement is a stronger conclusion than Proximity Gaps
(so far, their equivalence has not been proven). Let's introduce the Correlated Agreement conclusion below.

Correlated Agreement
For the affine space mentioned earlier, to maintain consistency with
[BCIKS20, Theorem 1.6], we don't use a random number before the first vector , let

.

The Correlated Agreement theorem ([BCIKS20, Theorem 1.6]) says that if and

where is the given in the Proximity Gaps conclusion, then there exist and
such that

1. Density: ,

2. Agreement: For any , we have .

This means that if there are many elements falling into the shaded area, with a proportion larger than in
the Proximity Gaps conclusion, then there exist codewords in , and there will be a subset
in the domain with a very large proportion (more than), where each is consistent with the
corresponding on .

According to the conclusion of Proximity Gaps, the elements in fall into two categories:

1.

https://www.youtube.com/watch?v=8AMiZdWA1eM

2.

Now, if the proportion of elements falling into the shaded area is greater than , we can naturally exclude
the first case. This leads to the conclusion that all elements in fall within the shaded area, i.e.,

The correlated agreement theorem provides a more specific conclusion. It describes the relationship
between the elements before folding and the codewords found in the encoding space .

For example, if the Prover wants to prove that a polynomial , let ,
calculate , the Prover will send the oracle of these values to the Verifier. In practice,
Merkle trees are used to implement the oracle.

...

...

Split to obtain two polynomials and . In the honest case, , where
.

The Correlated Agreement conclusion tells us that for the affine space formed by
 and , if more than proportion of elements in fall into the "shaded area", i.e., satisfying

, then there exist as shown in the figure below, and . Let's assume
, then according to the conclusion , we have index

. On all , is consistent with , and is consistent with , which is represented in green
in the figure, meaning that when evaluating at these points in the set, their values are the same.

agree length

... ...

... ...

... ...

... ...

... ...

RS code
degree < k/2

Back to the analysis of increase, we can see that as increases, the in the first condition Density of
the Correlated Agreement conclusion will become smaller, which makes the subset that can be ensured
to exist in the conclusion smaller, making the obtained conclusion weaker.

In the [BCIKS20] paper, it is said that the Proximity Gap theorem ([BCIKS20, Theorem 1.2]) is derived from
the Correlated Agreement theorem ([BCIKS20, Theorem 1.6]), but it is not known yet whether the Proximity
Gap theorem can derive the Correlated Agreement theorem. If the Proximity Gap cannot derive the
Correlated Agreement theorem, it means that the Correlated Agreement theorem is a stronger conclusion
than the Proximity Gap theorem. If it can be derived, it means that these two theorems are equivalent.

?

✓
Correlated Agreement Proximity Gaps

In fact, there are many versions of the Correlated Agreement theorem, taking different can lead to
different theorems, can be:

1. Lines:

2. Low-degree parameterized curves:

3. Affine space:

At the same time, regarding the condition of the Correlated Agreement theorem

Here we measure the relative Hamming distance between and , we can also make this measure more
general by adding weights. Give a weight function , define the relative -agreement between
two vectors and as

When taking ,

The value of this measure is exactly equal to 1 minus the relative Hamming distance. Similarly, define the
maximum agreement between a vector and the code space as

Changing the condition in the theorem to:

We will get the corresponding Weighted correlated agreement theorem (see [BCIKS20, Section 7]). It can be
seen that the Correlated agreement theorem is very flexible. In the paper [BCIKS20, Theorem 8.3], for the
soundness proof of the batched FRI protocol, it first defines the required weight function , uses the
Weighted Correlated Agreement theorem to prove, rather than using the Proximity Gap theorem to prove.
And this theorem generally appears in proof by contradiction, it can powerfully help us find the codewords

 of the code space, and satisfy the properties mentioned in the theorem conclusion, which can help us
find contradictions through derivation.

Application of Correlated Agreement Theorem in
Soundness

Here's a brief description of the application of the Correlated Agreement theorem in the soundness proof,
which is not so rigorous, and the actual security analysis will be more complex.

As mentioned before, the soundness analysis of the FRI protocol is divided into two parts:

1. In the batch stage or Commit stage, due to the improper selection of random numbers, polynomials
that were originally far from the code space become closer to the corresponding code space after
folding, that is, entering the "shaded area".

2. In the Query stage, due to random checks, the Prover's cheating was not caught.

The Correlated Agreement theorem is mainly applied in the probability analysis of the first part. It will first
define the "bad" event : before folding , split into and , then use a
random number for folding to get , and the following occurs

Here is used, its definition is different from the Hamming distance, it is related to the random query of
the Query stage of FRI, which will not be explained in detail here. Assume that the probability of a "bad"
event occurring does not exceed , that is

If the FRI protocol folds times, then the probability of some "bad" events occurring does not exceed ,
that is

This way, the probability analysis of the first part is done, then assume that these "bad" events do not occur,
analyze the probability of the second part, and finally combine the two parts of probability to get the
conclusion of soundness.

Now the remaining key problem is how to prove equation (1), that is, to prove that if ,
we have

The idea is to use proof by contradiction, assuming that equation (2) does not hold, that is

This satisfies the condition of the Correlated Agreement theorem, which means that there exist
, and satisfying

and . With these codewords and in the code space, we can get a
polynomial ,

Due to the linearity of encoding, must also be a codeword, and , and at the same time we
have

Since , we can get , which contradicts the
assumption, so equation (2) holds.

Summary
Proximity gap plays a crucial role in the FRI protocol, allowing us to confidently use random numbers to fold
polynomials, which greatly reduces the number of oracles sent by the Prover and also reduces the number
of queries by the Verifier. In addition, Proximity gap is closely related to the Correlated Agreement theorem
and plays a key role in the soundness analysis of FRI.

References
[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
Gaps for Reed–Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of
Computer Science, pages 900–909, 2020.

Video: Proximity Gaps & Applications to Succinct Proofs

https://www.youtube.com/watch?v=8AMiZdWA1eM

	Proximity Gaps and Correlated Agreement: The Core of FRI Security Proof
	Proximity Gaps
	Honest Prover
	Malicious Prover

	Impact of Increasing \delta
	Correlated Agreement
	Application of Correlated Agreement Theorem in Soundness
	Summary
	References

