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This article mainly introduces the key ideas of the DeepFold protocol [GLHQTZ24]. The DeepFold protocol is a
polynomial commitment scheme (PCS) for multilinear polynomials, combining ideas from DEEP-FRI [BGKS20] and
BaseFold [ZCF24]. The BaseFold protocol [ZCF24] is also a PCS for multilinear polynomials, combining the FRI
protocol and the sumcheck protocol. However, in its original paper, it is limited to unique decoding. If it could be
optimized to work under list decoding, the number of queries made by the verifier to achieve the same security
parameter  could be reduced, thus also reducing the size of the proof. The DeepFold protocol adopts the DEEP
method from DEEP-FRI to achieve this. However, in [H24], Haböck proved the security of the BaseFold protocol for
Reed-Solomon codes under list decoding. On the other hand, the STIR protocol [ACFY24a] has fewer queries
compared to the DEEP-FRI protocol. The WHIR protocol [ACFY24b], which combines the STIR protocol and the
BaseFold protocol, can achieve fewer queries compared to the DeepFold protocol, although its security under list
decoding has not been rigorously proven yet.

DEEP Method: From Unique Decoding to List Decoding  
First, let's review the BaseFold protocol. Taking a trivariate (let ) linear polynomial as an example, let

 

The corresponding univariate polynomial is

 

 and  are referred to as "twin polynomials" in the [GLHQTZ24] paper, sharing the same coefficients
. Suppose the query point is , and the prover wants to commit to the value

of  at this point as . The BaseFold protocol first converts the committed value  into a sum form over a
hypercube , i.e.,

 

where . To prove that equation (1) is correct, the sumcheck
protocol can be used. However, in the last step of the sumcheck protocol, it will require obtaining the value of  at
a random point . This value can be obtained through the FRI protocol for . For an honest prover, a
Merkle tree can be used to commit to a vector , where , rate

, and evaluation domain . Express  as even and odd term polynomials

 

Then use the same random number  as in sumcheck to fold  and  to get a new polynomial 

 

It can be found that the multilinear polynomial corresponding to  is
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The prover sends the Merkle commitment  to the verifier. Generally, continuing the above steps,
divide  into odd and even terms,

 

Then fold using the random number ,

 

The prover sends the Merkle commitment  to the verifier. In the last step of the FRI protocol, we can
obtain  as a constant, which is exactly the value that the last step of sumcheck wants to
obtain. This way, performing sumcheck protocol and FRI protocol simultaneously completes the commitment of
the multilinear polynomial, which is the idea of the BaseFold protocol.

It can be found that in the BaseFold protocol, the role of the FRI protocol, in addition to its own purpose of
ensuring that  is  close to the corresponding RS code space , also provides the value of  to
ensure the correctness of . It is mentioned in [GLHQTZ24] that the original FRI protocol only requires
the provided vector  to be close to some RS codes, but in the -th round, it does not specifically require which
codes  should be close to. Under unique decoding, there is at most one code  close to the corresponding

 in the -th round. If it is list decoding, it means that there can be multiple codes  close to , and a

malicious prover can choose  to proceed with the protocol, which can also pass subsequent checks, and in the

last round,  is obtained, which is not a correct value.

codeword

Therefore, we now need a method to ensure the correctness of  under list decoding, that is, in the -th
round, we need to ensure that only  can be  close to , and  corresponds to the correct multivariate

polynomial . The DeepFold protocol uses the DEEP (Domain Extending for
Eliminating Pretenders) technique from the DEEP-FRI protocol [BGKS20] to solve this problem. In the -th round, a
random number  is selected from  instead of from , and the verifier additionally queries two values

, from which the verifier can calculate the value of  by themselves. Since

 



Therefore

 

Substituting , we can get

 

The verifier can calculate the value of  based on the above equation. Since  is a random number
selected from the entire , with high probability, there will not be two different polynomials  within the 
range of  that satisfy the same value at  under list decoding. This way, through the selection of , the
list decoding is restricted to only select the unique polynomial .

Let's explain why, with high probability, there can only be a unique polynomial  that satisfies the same value at

. Suppose there are two different polynomials  and  that have the same value at a random point

, i.e., , and they are both within the  range of . Let , , and
there are no more than  codewords within the  range of . According to the conjecture in [BGKS20], we
know that . Since , the polynomial  has a value of  at , and the

polynomial degrees of  and  will not exceed , so the degree of  will also not exceed , and

there are at most  zeros in . Since , the probability of such  being  at point  will not exceed

. There are  ways to choose different  and  within the  range of , so the overall probability
will not exceed . If  is large enough, this probability is very small. Therefore, it's the same for ,

with high probability, there is only one polynomial  that satisfies the same value at .

Now through the DEEP technique, we can convert list decoding to unique decoding, solving the problem that
under list decoding, there may be multiple polynomials within the  range of , and the prover can choose
different polynomials leading to inconsistent . Now the remaining problem is to let the verifier verify the
correctness of the value of  in each round.

Ensuring the Correctness of DEEP Method Evaluation  
The [GLHQTZ24] paper mentions that in the DEEP-FRI paper [BGKS20], the quotient method can be used to verify
the correctness of . According to the folding relation in equation (3),

 

A new form can be constructed, namely

 

If  is correct, then the newly constructed  above is a polynomial, thus transforming the problem of
verifying the correctness of  into an IOPP problem about . However, this method is not applicable in
the current multilinear polynomial PCS scheme, because although equation (4) can ensure the correctness of

 in each round, the  obtained at the end of the protocol is not equal to .

The DeepFold protocol provides a new method to ensure the correctness at these points . Let's still use the
case of  to explain this method. Suppose now the verifier selects a random number  in the 
round, and now the verifier wants to ensure the correctness of . First, the verifier can query the prover for
the values of , substituting into the expression of , we get



 

This exactly corresponds to the value of the multilinear polynomial  at the point ,

 

Therefore . After the verifier receives , they can calculate 
themselves, that is, by calculating using the following equation

 

Similar to the derivation of  above, the  obtained at this time should have the following
relationship with the corresponding multilinear polynomial:

 

Now, to ensure the correctness of , the verifier can query the prover for , and the verifier can
calculate  themselves using equation (5), at this time

 

Now the correctness of  has been transformed into proving the correctness of . Similarly, the
verifier queries the prover for , and the verifier can calculate , at this time it should equal

 

In this way, the correctness of  is finally transformed into the correctness of the value of , which
should equal , which is exactly the value that will be obtained in the last step of FRI.

verifier compute

verifier compute

verifier compute

provided by FRI
prover send

prover send

prover send

Finally, verifier can check this correctness

Through the above process, we can also find that if , generally, in the -th round, the correctness of the value
of  provided is transformed into verifying the correctness of , by the prover additionally
sending , it is transformed into verifying , until finally all are transformed into verifying the
correctness of , which is exactly what the FRI protocol provides.

DeepFold Protocol  



Summarizing the introduction of the DEEP method above, in order to avoid a malicious prover possibly selecting
an incorrect polynomial  within the  range of  to pass verification under list decoding, the verifier selects

 from the range of  in each round, forcing the prover to provide only the unique polynomial , making its
value at  correct. To verify the correctness of the value at , the prover provides , the
verifier calculates  on their own, until finally it is transformed into verifying the correctness of

. Below, taking the PCS of a trivariate linear polynomial as an example, we will go through
the complete DeepFold protocol [GLHQTZ24]. Although the protocol process has many steps, the core ideas are
still the two points mentioned above.

In the commitment phase of , the polynomial commitment sent by the prover to the verifier is .

1. The prover calculates , and commits to this vector using a Merkle tree, that is, sends
 to the verifier.

2. The verifier sends a random point .

3. The prover calculates  and sends  to the verifier.

The prover wants to prove to the verifier that: at the query point , . At the same
time, the verifier has  received from the prover during the polynomial commitment phase. The
prover and verifier perform the following protocol process: Step 1: Let , where .
Step 2: For each round , perform the following steps:

2.1 When 

a. The verifier sends  to the prover. Let , where .

The  sent in this step is the random number outside of  used in the DEEP method to limit the prover to
only send the unique polynomial . The vector  is for subsequent continuous
verification of the correctness of .

b. Let , for each , the prover sends the following polynomials to the verifier:

 

Let .

The  polynomials in this step are similar to the univariate polynomials constructed in the sumcheck
protocol to prove the correctness of the sum.

c. The verifier sends  to the prover. d. The prover calculates the folded polynomial

, where  and  should satisfy

 

The meaning of satisfying this equation is to ensure that  and  are the even and odd term
functions of .

e. Let , the prover sends the Merkle tree commitment of vector  to the verifier, i.e.,
.

2.2 When 



a. The verifier sends  to the prover. Let ,
where .

Note that the length of each vector in  has now changed to . The  selected here is to use the DEEP
method in the second round to limit the prover to only send the unique polynomial , and ensure
that the polynomial  satisfies  at point .

b. Let , for each , the prover sends the following
polynomials to the verifier:

 

Let .

c. The verifier sends  to the prover. d. The prover calculates the folded polynomial

, where  and  should satisfy

 

e. Let , the prover sends the Merkle tree commitment of vector  to the verifier, i.e.,
.

2.3 When 

a. The verifier sends  to the prover. Let , where
.

b. The prover sends the linear function to the verifier

 

Now it's the last round, directly send the function .

c. The verifier sends  to the prover. d. The prover calculates the folded polynomial

, where  and  should satisfy

 

e. Let , the prover sends  to the verifier.

In the last round, FRI will finally fold into a constant polynomial, so here directly send a value .

The following steps are the verification process performed by the verifier.

Step 3: The verifier checks

 

According to the construction of the  function when  and , for an honest prover, the above
three equations hold because



 

Next, for each round, the verifier also needs to perform the following checks.

3.1 When 

a. For each , check , i.e., check

 

fix I think in the original paper's Step 3

For each round , where  , a. For each , if ,  checks  ;

otherwise,  checks  .

should be changed to, when , verifier checks , otherwise checks

. The reason is that, for example, when ,  does not hold when

substituted into the function construction sent by the prover earlier.

Actually, the last equation above does not need to be checked, i.e., . We can

verify that the above equations are correct because substituting into the  equation from Round 1 gives

 

3.2 When 

a. For each , check , i.e., check

 

The last equation  does not need to be checked. We can verify that the above

equations hold because substituting into the  equations from Rounds 1 and 2 gives

 

3.2 When 

a. For each , check , i.e., check

 



Similarly, the last equation  does not need to be checked. We can verify that the above 4
equations hold because substituting into the  equations from Rounds 2 and 3 gives

 

Step 4: Repeat query  times: a. The verifier sends  to the prover. For , define . b. For
each , the prover uses  to open  and . c. The verifier checks if the
results sent by the prover are correct by calling . d. For each , the verifier needs to check if the
following three points are on a straight line:

 

In this step, the verifier is performing FRI folding queries, randomly checking if the folding is correct,
repeating the query  times.

Step 5: If all the above checks pass, the verifier outputs , indicating acceptance; otherwise, outputs , indicating
rejection.

References  
[GLHQTZ24] Yanpei Guo, Xuanming Liu, Kexi Huang, Wenjie Qu, Tianyang Tao, and Jiaheng Zhang. "DeepFold:
Efficient Multilinear Polynomial Commitment from Reed-Solomon Code and Its Application to Zero-
knowledge Proofs." Cryptology ePrint Archive (2024).

[ACFY24a] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "STIR: Reed-Solomon proximity
testing with fewer queries." In Annual International Cryptology Conference, pp. 380-413. Cham: Springer Nature
Switzerland, 2024.

[ACFY24b] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "WHIR: Reed–Solomon Proximity
Testing with Super-Fast Verification." Cryptology ePrint Archive (2024).

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps
for Reed–Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science, pages 900–909, 2020.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. "BaseFold: efficient field-agnostic polynomial
commitment schemes from foldable codes." Annual International Cryptology Conference. Cham: Springer
Nature Switzerland, 2024.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. "DEEP-FRI: sampling outside
the box improves soundness." arXiv preprint arXiv:1903.12243 (2019).

[H24] Ulrich Haböck. "Basefold in the List Decoding Regime." Cryptology ePrint Archive(2024).


	Note on DeepFold: Protocol Overview
	DEEP Method: From Unique Decoding to List Decoding
	Ensuring the Correctness of DEEP Method Evaluation
	DeepFold Protocol
	References


