
Note on DeepFold: Protocol Overview
Jade Xie jade@secbit.io

Yu Guo yu.guo@secbit.io

This article mainly introduces the key ideas of the DeepFold protocol [GLHQTZ24]. The DeepFold protocol is a
polynomial commitment scheme (PCS) for multilinear polynomials, combining ideas from DEEP-FRI [BGKS20] and
BaseFold [ZCF24]. The BaseFold protocol [ZCF24] is also a PCS for multilinear polynomials, combining the FRI
protocol and the sumcheck protocol. However, in its original paper, it is limited to unique decoding. If it could be
optimized to work under list decoding, the number of queries made by the verifier to achieve the same security
parameter could be reduced, thus also reducing the size of the proof. The DeepFold protocol adopts the DEEP
method from DEEP-FRI to achieve this. However, in [H24], Haböck proved the security of the BaseFold protocol for
Reed-Solomon codes under list decoding. On the other hand, the STIR protocol [ACFY24a] has fewer queries
compared to the DEEP-FRI protocol. The WHIR protocol [ACFY24b], which combines the STIR protocol and the
BaseFold protocol, can achieve fewer queries compared to the DeepFold protocol, although its security under list
decoding has not been rigorously proven yet.

DEEP Method: From Unique Decoding to List Decoding
First, let's review the BaseFold protocol. Taking a trivariate (let) linear polynomial as an example, let

The corresponding univariate polynomial is

 and are referred to as "twin polynomials" in the [GLHQTZ24] paper, sharing the same coefficients
. Suppose the query point is , and the prover wants to commit to the value

of at this point as . The BaseFold protocol first converts the committed value into a sum form over a
hypercube , i.e.,

where . To prove that equation (1) is correct, the sumcheck
protocol can be used. However, in the last step of the sumcheck protocol, it will require obtaining the value of at
a random point . This value can be obtained through the FRI protocol for . For an honest prover, a
Merkle tree can be used to commit to a vector , where , rate

, and evaluation domain . Express as even and odd term polynomials

Then use the same random number as in sumcheck to fold and to get a new polynomial

It can be found that the multilinear polynomial corresponding to is

mailto:jade@secbit.io
mailto:yu.guo@secbit.io

The prover sends the Merkle commitment to the verifier. Generally, continuing the above steps,
divide into odd and even terms,

Then fold using the random number ,

The prover sends the Merkle commitment to the verifier. In the last step of the FRI protocol, we can
obtain as a constant, which is exactly the value that the last step of sumcheck wants to
obtain. This way, performing sumcheck protocol and FRI protocol simultaneously completes the commitment of
the multilinear polynomial, which is the idea of the BaseFold protocol.

It can be found that in the BaseFold protocol, the role of the FRI protocol, in addition to its own purpose of
ensuring that is close to the corresponding RS code space , also provides the value of to
ensure the correctness of . It is mentioned in [GLHQTZ24] that the original FRI protocol only requires
the provided vector to be close to some RS codes, but in the -th round, it does not specifically require which
codes should be close to. Under unique decoding, there is at most one code close to the corresponding

 in the -th round. If it is list decoding, it means that there can be multiple codes close to , and a

malicious prover can choose to proceed with the protocol, which can also pass subsequent checks, and in the

last round, is obtained, which is not a correct value.

codeword

Therefore, we now need a method to ensure the correctness of under list decoding, that is, in the -th
round, we need to ensure that only can be close to , and corresponds to the correct multivariate

polynomial . The DeepFold protocol uses the DEEP (Domain Extending for
Eliminating Pretenders) technique from the DEEP-FRI protocol [BGKS20] to solve this problem. In the -th round, a
random number is selected from instead of from , and the verifier additionally queries two values

, from which the verifier can calculate the value of by themselves. Since

Therefore

Substituting , we can get

The verifier can calculate the value of based on the above equation. Since is a random number
selected from the entire , with high probability, there will not be two different polynomials within the
range of that satisfy the same value at under list decoding. This way, through the selection of , the
list decoding is restricted to only select the unique polynomial .

Let's explain why, with high probability, there can only be a unique polynomial that satisfies the same value at

. Suppose there are two different polynomials and that have the same value at a random point

, i.e., , and they are both within the range of . Let , , and
there are no more than codewords within the range of . According to the conjecture in [BGKS20], we
know that . Since , the polynomial has a value of at , and the

polynomial degrees of and will not exceed , so the degree of will also not exceed , and

there are at most zeros in . Since , the probability of such being at point will not exceed

. There are ways to choose different and within the range of , so the overall probability
will not exceed . If is large enough, this probability is very small. Therefore, it's the same for ,

with high probability, there is only one polynomial that satisfies the same value at .

Now through the DEEP technique, we can convert list decoding to unique decoding, solving the problem that
under list decoding, there may be multiple polynomials within the range of , and the prover can choose
different polynomials leading to inconsistent . Now the remaining problem is to let the verifier verify the
correctness of the value of in each round.

Ensuring the Correctness of DEEP Method Evaluation
The [GLHQTZ24] paper mentions that in the DEEP-FRI paper [BGKS20], the quotient method can be used to verify
the correctness of . According to the folding relation in equation (3),

A new form can be constructed, namely

If is correct, then the newly constructed above is a polynomial, thus transforming the problem of
verifying the correctness of into an IOPP problem about . However, this method is not applicable in
the current multilinear polynomial PCS scheme, because although equation (4) can ensure the correctness of

 in each round, the obtained at the end of the protocol is not equal to .

The DeepFold protocol provides a new method to ensure the correctness at these points . Let's still use the
case of to explain this method. Suppose now the verifier selects a random number in the
round, and now the verifier wants to ensure the correctness of . First, the verifier can query the prover for
the values of , substituting into the expression of , we get

This exactly corresponds to the value of the multilinear polynomial at the point ,

Therefore . After the verifier receives , they can calculate
themselves, that is, by calculating using the following equation

Similar to the derivation of above, the obtained at this time should have the following
relationship with the corresponding multilinear polynomial:

Now, to ensure the correctness of , the verifier can query the prover for , and the verifier can
calculate themselves using equation (5), at this time

Now the correctness of has been transformed into proving the correctness of . Similarly, the
verifier queries the prover for , and the verifier can calculate , at this time it should equal

In this way, the correctness of is finally transformed into the correctness of the value of , which
should equal , which is exactly the value that will be obtained in the last step of FRI.

verifier compute

verifier compute

verifier compute

provided by FRI
prover send

prover send

prover send

Finally, verifier can check this correctness

Through the above process, we can also find that if , generally, in the -th round, the correctness of the value
of provided is transformed into verifying the correctness of , by the prover additionally
sending , it is transformed into verifying , until finally all are transformed into verifying the
correctness of , which is exactly what the FRI protocol provides.

DeepFold Protocol

Summarizing the introduction of the DEEP method above, in order to avoid a malicious prover possibly selecting
an incorrect polynomial within the range of to pass verification under list decoding, the verifier selects

 from the range of in each round, forcing the prover to provide only the unique polynomial , making its
value at correct. To verify the correctness of the value at , the prover provides , the
verifier calculates on their own, until finally it is transformed into verifying the correctness of

. Below, taking the PCS of a trivariate linear polynomial as an example, we will go through
the complete DeepFold protocol [GLHQTZ24]. Although the protocol process has many steps, the core ideas are
still the two points mentioned above.

In the commitment phase of , the polynomial commitment sent by the prover to the verifier is .

1. The prover calculates , and commits to this vector using a Merkle tree, that is, sends
 to the verifier.

2. The verifier sends a random point .

3. The prover calculates and sends to the verifier.

The prover wants to prove to the verifier that: at the query point , . At the same
time, the verifier has received from the prover during the polynomial commitment phase. The
prover and verifier perform the following protocol process: Step 1: Let , where .
Step 2: For each round , perform the following steps:

2.1 When

a. The verifier sends to the prover. Let , where .

The sent in this step is the random number outside of used in the DEEP method to limit the prover to
only send the unique polynomial . The vector is for subsequent continuous
verification of the correctness of .

b. Let , for each , the prover sends the following polynomials to the verifier:

Let .

The polynomials in this step are similar to the univariate polynomials constructed in the sumcheck
protocol to prove the correctness of the sum.

c. The verifier sends to the prover. d. The prover calculates the folded polynomial

, where and should satisfy

The meaning of satisfying this equation is to ensure that and are the even and odd term
functions of .

e. Let , the prover sends the Merkle tree commitment of vector to the verifier, i.e.,
.

2.2 When

a. The verifier sends to the prover. Let ,
where .

Note that the length of each vector in has now changed to . The selected here is to use the DEEP
method in the second round to limit the prover to only send the unique polynomial , and ensure
that the polynomial satisfies at point .

b. Let , for each , the prover sends the following
polynomials to the verifier:

Let .

c. The verifier sends to the prover. d. The prover calculates the folded polynomial

, where and should satisfy

e. Let , the prover sends the Merkle tree commitment of vector to the verifier, i.e.,
.

2.3 When

a. The verifier sends to the prover. Let , where
.

b. The prover sends the linear function to the verifier

Now it's the last round, directly send the function .

c. The verifier sends to the prover. d. The prover calculates the folded polynomial

, where and should satisfy

e. Let , the prover sends to the verifier.

In the last round, FRI will finally fold into a constant polynomial, so here directly send a value .

The following steps are the verification process performed by the verifier.

Step 3: The verifier checks

According to the construction of the function when and , for an honest prover, the above
three equations hold because

Next, for each round, the verifier also needs to perform the following checks.

3.1 When

a. For each , check , i.e., check

fix I think in the original paper's Step 3

For each round , where , a. For each , if , checks ;

otherwise, checks .

should be changed to, when , verifier checks , otherwise checks

. The reason is that, for example, when , does not hold when

substituted into the function construction sent by the prover earlier.

Actually, the last equation above does not need to be checked, i.e., . We can

verify that the above equations are correct because substituting into the equation from Round 1 gives

3.2 When

a. For each , check , i.e., check

The last equation does not need to be checked. We can verify that the above

equations hold because substituting into the equations from Rounds 1 and 2 gives

3.2 When

a. For each , check , i.e., check

Similarly, the last equation does not need to be checked. We can verify that the above 4
equations hold because substituting into the equations from Rounds 2 and 3 gives

Step 4: Repeat query times: a. The verifier sends to the prover. For , define . b. For
each , the prover uses to open and . c. The verifier checks if the
results sent by the prover are correct by calling . d. For each , the verifier needs to check if the
following three points are on a straight line:

In this step, the verifier is performing FRI folding queries, randomly checking if the folding is correct,
repeating the query times.

Step 5: If all the above checks pass, the verifier outputs , indicating acceptance; otherwise, outputs , indicating
rejection.

References
[GLHQTZ24] Yanpei Guo, Xuanming Liu, Kexi Huang, Wenjie Qu, Tianyang Tao, and Jiaheng Zhang. "DeepFold:
Efficient Multilinear Polynomial Commitment from Reed-Solomon Code and Its Application to Zero-
knowledge Proofs." Cryptology ePrint Archive (2024).

[ACFY24a] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "STIR: Reed-Solomon proximity
testing with fewer queries." In Annual International Cryptology Conference, pp. 380-413. Cham: Springer Nature
Switzerland, 2024.

[ACFY24b] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "WHIR: Reed–Solomon Proximity
Testing with Super-Fast Verification." Cryptology ePrint Archive (2024).

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps
for Reed–Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science, pages 900–909, 2020.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. "BaseFold: efficient field-agnostic polynomial
commitment schemes from foldable codes." Annual International Cryptology Conference. Cham: Springer
Nature Switzerland, 2024.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. "DEEP-FRI: sampling outside
the box improves soundness." arXiv preprint arXiv:1903.12243 (2019).

[H24] Ulrich Haböck. "Basefold in the List Decoding Regime." Cryptology ePrint Archive(2024).

	Note on DeepFold: Protocol Overview
	DEEP Method: From Unique Decoding to List Decoding
	Ensuring the Correctness of DEEP Method Evaluation
	DeepFold Protocol
	References

