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The paper [BCIKS20] improves the soundness of the FRI protocol in [BBHR18], mainly analyzing the case of batched FRI. This article
will provide a detailed analysis of the content related to batched FRI soundness in the [BCIKS20] paper.

Introduction  
In the context of interactive proofs, distributed storage, and cryptography, various protocols have emerged that raise questions
about the proximity of a linear code , where  is a finite field and  has minimum relative distance . These protocols
assume access to oracles for a batch of vectors , and their soundness requires each vector  to be close to

 in relative Hamming distance. Furthermore, soundness deteriorates as a function of the largest distance between some vector 
and the code . Therefore, we aim to find protocols that minimize the number of queries to elements of  while maximizing the
probability of identifying when some vector  is far from .

 Questions

How to understand the following sentence? Furthermore, soundness deteriorates as a function of the largest distance
between some vector ui and the code V. Does soundness decrease as the maximum distance between some vectors 
and code  increases, meaning that the probability of the Verifier rejecting decreases?

How to clearly explain the decrease in soundness?

Due to the linearity of , a natural approach ([RVW13]) is to randomly sample a vector  uniformly from span( ) (i.e., linear
combinations of elements in ), and treat the distance  between  and  as a proxy for the maximum distance between
some elements of  and . To prove soundness, we want that even if only one  is -far from all elements in , the randomly
chosen  is also far from .

In the following,  represents the relative Hamming distance. When  holds for some , we say "  is -close to ",
denoted as ; otherwise, we say "  is -far from ", denoted as .

Regarding this problem, some research results are:

1. [AHIV17] If , almost all  are -far from .

2. [RZ18] Improved the above result to .

3. [BKS18] Improved to .

4. [BGKS20] Improved to , but this bound is tight for RS codes, as it can be achieved when .

 Thoughts

Why is the focus of research on increasing the upper bound of this ? Regarding this question, my current thoughts are:
The upper bound of  here is related to , and for RS code, , which is essentially related to the code rate. So
increasing the upper bound means lowering the code rate, which implies more redundancy. If with the same security or
the same high probability of rejecting errors, fewer queries are needed. Or to put it another way, if for the same protocol,
the number of queries is fixed, the larger  is, the higher the probability of rejection, thus improving soundness.

The second point of the above analysis seems to contradict "Furthermore, soundness deteriorates as a function of the
largest distance between some vector  and the code V." This sentence says that the larger  is, the smaller the
soundness? How should this be understood?

One question we are currently concerned with is: For which codes and what range of  does the following statement hold?

If some  is -far from , then for almost all ,  is also -far from .

One of the main conclusions of the [BCIKS20] paper shows that when  is an RS code over a sufficiently large field (the field size is
polynomially related to the block length of the code) and  is less than the Johnson/Guruswami-Sudan list decoding bound, the
above statement holds. Next, we call this a proximity gap.

Proximity Gaps  

mailto:jade@secbit.io
mailto:yu.guo@secbit.io


First, let's give the definition of Proximity Gaps.

Definition 1.1 [BCIKS20, Definition 1.1] (Proximity gap). Let  be a property and  be a collection of sets. Let  be a
distance measure on . We say that  displays a -proximity gap with respect to  under  if every  satisfies exactly
one of the following:

1. .

2. .

We call  the proximity parameter and  is the error parameter. By default,  denotes the relative Hamming distance measure.

For RS code, if  is an RS encoding, corresponding to  in the above definition, and  is an affine space,
corresponding to  in the above definition, then either all elements in  are -close to , or almost all elements in  are -far from

. In other words, there is no such affine space  where about half of the elements are close to , but at the same time, the other
half are far from .

As shown in the figure below,  is an affine space, represented here by a line, and elements in the encoding space  are
represented by black dots. Circles are drawn with these points as centers and  as the radius. Then there are only two situations:

1. All elements on line  fall within the green circular area.

line Aall points on the line are within the balls



2. Only a few elements on the line fall within the green circular area.

line Aseveral points on the line are within the balls

The elements in  cannot be half inside the circular area and half outside, which is also the meaning of gap. It divides all the
elements in  into exactly two cases, and these two cases form a huge gap based on the relative Hamming distance.

In the following, we use  to represent a finite field of size , and  to represent an RS code with dimension  and
blocklength , whose codewords are evaluated on  and are polynomials of degree . We use  to represent the code
rate, so .  represents the relative Hamming distance relative to the RS code, and  represents the error parameter, which
is the probability of a "bad event" occurring.

Below is the Proximity gaps theorem for RS code.

Theorem 1.2 [BCIKS20, Theorem 1.2] (Proximity gap for RS codes). The collection  of affine spaces in  displays a -
proximity gap with respect to the RS code  of blocklength  and rate , for any , and

 defined as the following piecewise function:

Unique decoding bound: For , the error parameter  is

 

List decoding bound: For , setting , the error parameter  is

 

 Question

The larger  is, the more elements may fall into the circular area, so  is larger than . Is this the reason?

Correlated agreements  
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The main theorem proved in the paper is correlated agreement. For two vectors  in , we choose a random number 
in , and we are concerned with the distance between the space formed by  after linear combination with  and , that is,
the one-dimensional affine space . The correlated agreement conclusion states that if there are enough
elements in  that are close enough to the RS code space  ( -close), then there must exist a non-trivial subdomain ,
whose size is at least  times the size of , such that restricting  to , there are valid RS codes  that agree with

 respectively on . We say that such a  has the correlated agreement property, meaning that  and elements in 
not only have a large agreement with RS code respectively, but also share a common large agreement set. This result has two
parameter ranges, one is the proximity parameter within the unique decoding range, and the other is the proximity parameter
within the list decoding range.

The following presents correlated agreements for three situations. Combined with other conclusions about correlated agreement in
the paper, they are shown in the table below.

The following three theorems correspond to the correlated agreement theorems for lines, low-degree parameterized curves, and
affine spaces, respectively.

Theorem 1.4 [BSCIK20, Theorem 1.4] (Main Theorem - Correlated agreement over lines). Let  and  be as defined in
Theorem 1.2. For , if  and

 

where  is as defined in Theorem 1.2, then there exist  and  satisfying

Density: , and

Agreement:  agrees with  and  agrees with  on all of .

Let , then a parameterized curve of degree  is the set of vectors in  generated by  as follows,

 

Theorem 1.5 [BSCIK20, Theorem 1.5] (Correlated agreement for low-degree parameterized curves). Let  and  be as
defined in Theorem 1.2. Let . If  and

 

where  is as defined in Theorem 1.2, then there exist  and  satisfying

Density: , and

Agreement: for all , the functions  and  agree on all of .

Theorem 1.6 [BSCIK20, Theorem 1.6] (Correlated agreement over affine spaces). Let  and  be as defined in Theorem 1.2.
For  let  be an affine subspace. If  and

 

where  is as defined in Theorem 1.2, then there exist  and  satisfying

Density: , and

Agreement: for all , the functions  and  agree on all of .

Furthermore, in the unique decoding regime , there exists a unique maximal  satisfying the above, with unique .

Correlated Weighted Agreement



Correlated Weighted Agreement  
To analyze the soundness of the FRI protocol, we need a weighted version of Theorem 1.5.

For a given weight vector , the (relative) -agreement between  and  is defined as

 

That is, it looks at the proportion of agreement between  and  on  under the weight . If we let , then

 

The agreement between a word  and a linear code  is the maximum agreement between  and a codeword in ,

 

The weighted size of a subdomain  is defined as

 

If we define  in the above definition as , then the agreement satisfies
.

Finally, for , where  is a group of words, the -weighted correlated agreement is the maximum -

weighted size of a subdomain , such that the restriction of  to  belongs to , i.e., for each , there exists
 such that . When  is not specified, it is set to the constant weight function 1, which recovers the notion of

correlated agreement metric discussed earlier.

Next, we assume that the weight function  has some structure, specifically, all weights  are of the form , where 
are varying integers with a common denominator . For the special case of FRI soundness (where  equals the blocklength of the
RS code to which the FRI protocol is applied), this assumption indeed holds. The following is a weighted generalization of Theorem
1.5.

Theorem 7.1 [BSCIK20, Theorem 7.1] (Weighted correlated agreement over curves – Version I). Let  and  be as defined in
Theorem 1.2. Let . Let  and let  be a vector of weights, whose values all have
denominator . Suppose

 

where  is as defined in Theorem 1.2 (with ), and additionally suppose

 

Then there exists  and  satisfying

Density: , and

Agreement: for all , the functions  and  agree on all of .

A more precise form that only applies to the Johnson bound range is as follows.

Theorem 7.2 [BSCIK20, Theorem 7.2] (Weighted correlated agreement over curves – Version II). Let  and  be as defined in
Theorem 1.2. Let . Let  be a vector of weights, whose values all have denominator . Let

 and let

 

Let

 



and suppose

 

Then  have at least  correlated -agreement with , i.e.  such that

 

Theorem 7.3 [BSCIK20, Theorem 7.3] (Weighted correlated agreement over affine spaces). Let  and  be as defined in
Theorem 1.2. Let  and let  be an affine subspace. Let  and

let  be a vector of weights, whose values all have denominator . Suppose

 

where  is as defined in Theorem 1.2 (with ), and additionally suppose

 

Then there exist  and  satisfying

-Density: , and

Agreement: for all , the functions  and  agree on all of .

Similarly, there is a more precise form for Theorem 7.3 regarding the Johnson bound.

Theorem 7.4 [BSCIK20, Theorem 7.4] (Weighted correlated agreement over affine spaces – Version II). Let  and  be as
defined in Theorem 1.2. Let  and let  be an affine subspace. Let

 be a vector of weights, whose values all have denominator . Let  and let

 

Suppose

 

Then  have at least  correlated -agreement with , i.e.  such that

 

FRI Protocol  
The purpose of the FRI protocol is to solve the Reed-Solomon proximity testing problem in the IOP model, that is, for a received
word , verify its proximity to . If  belongs to , accept; if it is -far from , reject.
The FRI protocol applies to any case where the evaluation domain  is a coset of a 2-smooth group, i.e., for any , it is a coset
of an (additive or multiplicative) group of size , where  is an integer. Therefore, for simplicity, we assume that the group  is
multiplicative. The FRI protocol has two phases: the COMMIT phase and the QUERY phase.

In the COMMIT phase, after a finite number of  rounds of interaction, a series of functions
 will be generated. In each iteration, the size of the domain 

decreases. Assuming that for an honest prover,  is low-degree, then for each , they will all be low-degree (see Proposition 1).
At the beginning of the -th round, the prover's message  has been generated, and the verifier can access the oracle
of this message. The Verifier now sends a uniformly random , and then the prover replies with a new function

, where  is a (2-smooth) strict subgroup of , meaning that  is not only a subgroup of , but
also its proper subset.

 divides  into cosets of size . Let  represent the coset corresponding to , i.e.,

 



This means selecting those elements in  that can be mapped to  in  through the mapping , and these

elements form the set , which is also a coset.

For each coset , the interpolation map  is an invertible linear map , which maps 

(i.e., restricting  to the domain ) to the coefficient vector  of the polynomial

, where  is the polynomial interpolating . In other words,  is the inverse of

the Vandermonde matrix generated by , which means that  is the evaluation of the polynomial

 on the coset .

 Notice To maintain consistency throughout this article, we use  to represent a row vector, and 
to represent a column vector, which can also be written as:

 

Let's explain the description of the interpolation map above in more detail. According to the definition of , we know that it

contains  elements. Let , we can write out the Vandermonde matrix generated by :

 

Then , which is the inverse of the Vandermonde matrix generated by , therefore

 

From the above derivation, we can see that  is the evaluation of the polynomial

 on the coset , so  is the evaluation of the polynomial

 on the coset .

The following proposition uses the above notation and restates [BBHR18, Section 4.1], differing from [BBHR18, Section 4.1] in that it
is done over a multiplicative group rather than an additive group. This proposition describes the property of maintaining low-
degree.



Claim 1 [BCIKS20, Claim 8.1]. Suppose that  where  is an integral power of . Then, for any ,

letting , the function  defined on  by

 

is a valid codeword of  where .

According to [BBHR18] and the above notation, in the COMMIT phase of the FRI protocol, fixing a , the next step

constructs . Let's understand the construction formula above.

 

Let's explain the second equation given in Proposition 1, i.e., . According to the previous analysis, for the

Vandermonde matrix generated by , we have

 

Therefore

 

This gives us .

Batching  
In some cases, the first prover's oracle  is sampled from functions in an affine space , which serves as our input,

 

When using the FRI protocol to "batch" multiple instances of different low degree testing problems, we combine them all together

through random linear combinations, i.e.,  in the above formula. In this batching setting, we assume

that the prover has already committed to  (note that in this case we set ), and the verifier of the batched FRI

uniformly randomly samples , the prover replies with , which should equal , and now the
FRI protocol is applied to . Correspondingly, the QUERY phase of the batched FRI is also extended, so that each time a query for

 is requested, the verifier also queries  and verifies .



 Fix

The formula in the paper here is . I think it's missing the coefficient  from before,

and should be .

The (batched) FRI QUERY phase  

Proposition 1 shows that for an honest prover, for any value  chosen by the verifier, for each , the prover can
construct a new codeword  from a codeword  by calculating equation (2). Therefore, we will always
assume that , for example, by assuming that the verifier always queries the first  elements of  (in some canonical
order) and compares  with the interpolation polynomial of this function.

Proposition 1 provides a very natural testing method to check the consistency between  and , and the query phase of FRI
follows this process by iteratively applying this natural test from the "top" ( ) to the "bottom" ( ).

 Question

How to better explain this natural testing method here?

A single invocation of the FRI QUERY phase  

1. Choose  uniformly randomly from . For , choose  uniformly randomly from the coset .

2. If , then reject.

3. If, for any , , then reject.

4. Otherwise — if all equations in the above conditions hold, then accept.

The above QUERY process differs from the QUERY process of FRI in [BBHR18] in that the random number selection starts from the
last  instead of from the initial . Compared to the QUERY phase in [BBHR18], here we also want to verify whether the batch

is correct at step 0, that is, .

Summary of the batched FRI protocol  

Let's summarize the important properties mentioned so far, which will be used in the following soundness analysis.

1. At the end of the COMMIT phase of the protocol, the verifier can access through oracles a series of functions
, where  is a series of -smooth groups, and  arbitrarily depends

on  (and ). We assume .

2. There exists a set of  invertible matrices , so that applying  to  maps 

to a sequence of vectors , where

 

Certainly. I'll translate the text into English while maintaining all formulas and markdown formats. Here's the translation:

Moreover, if  is a valid RS codeword with rate  on , then each vector on the parametric curve through  is also a valid RS
codeword with rate  on .

1. In each iteration of the QUERY phase, it checks whether  is constructed from  through equation , and (in the
batched case) checks whether  is correctly calculated through equation .

Soundness  
Lemma 8.2 [BSCIK20, Lemma 8.2] (batched FRI error bound). Let  where  is a coset of a -smooth
multiplicative group, and  is a power of ; set .

Let  be a space of functions as defined in Eq.  whose correlated agreement density with  is . For integer ,
let

 



Assume the FRI protocol is used with  rounds, and let  denote the ratio between prover messages (oracles) 
and . Let  denote the probability that the verifier accepts a single FRI QUERY invocation. Then,

 

where

 

In words: For any interactive FRI prover , the probability that the oracles  sent by  will pass a single invocation of
the batched FRI QUERY test with probability greater than , is smaller than . The probability is over the random
variables  used to sample  from  and over the random messages  sent by the verifier during the
COMMIT phase.

Theorem 8.3 [BSCIK20, Theorem 8.3] (Batched FRI Soundness). Let  be a sequence of functions and let
 where  is a coset of a -smooth group of size , and  satisfies  for

positive integer . Let  for integer  and  be as defined in Lemma 8.2.

Assume the FRI protocol is used with  rounds. Let  denote the ratio between prover messages (oracles)  and
. Assume furthermore that  is the number of invocations of the FRI QUERY step.

Suppose there exists a batched FRI prover  that interacts with the batched FRI verifier and causes it to output "accept" with
probability greater than

 

Then  have correlated agreement with  on a domain  of density at least .

Proof of Theorem 8.3: By contradiction, then directly prove through Lemma 8.2. Assume that the maximum correlated agreement

of  with  is less than , but at the same time, the acceptance probability is greater
than .

Let  be the event that the acceptance probability in each FRI QUERY phase is greater than . This event depends on
, where each  is generated by  based on the previous messages from the Verifier.

According to Lemma 8.2, for any Prover , the probability of event  occurring does not exceed . When event  does not hold,
the probability that  independent invocations of FRI QUERY all return "accept" does not exceed .

Therefore, the probability that the FRI Verifier accepts does not exceed , which contradicts the assumption.

 Question

Here, for the event  where the acceptance probability is greater than  in each FRI QUERY phase, how is it still
not exceeding  when called  times? Why isn't it ?

Proof of Lemma 8.2  
Before proving Lemma 8.2, let's introduce a method to track whether the verifier's consistency check passes. Specifically, the Prover
will construct function  based on the random number  sent by the Verifier, and then respond to the Verifier with function

. In the QUERY phase of FRI, the Verifier will check the consistency between function  and function .

Define a series of weight functions,  and , where . These weight functions are
defined by induction. When , use  weights to indicate whether  is calculated correctly:

 

Now,  obtained by induction can be used to define an auxiliary weight function . By taking an element 

in , we can get a coset , which is composed of all elements in  that can be mapped to  through the mapping
, as shown in ,

 



Then the definition of  is

 

In other words,  is the expected value of the  weights of all elements in the coset . Finally, define the function
, for each :

 

Regarding the definition of , an important property is that  is a measure of the probability of success in the FRI QUERY
phase, conditional on querying  from , which is an important reason for the following proposition to hold.

Claim 8.5. The probability  that a single invocation of the batched FRI QUERY accepts , where
, satisfies

 

Proof: Recall the invocation of FRI QUERY, a series of random  will be selected, where  is uniformly randomly
selected from the coset . We will prove by induction that for 

 

equals the probability that when  is uniformly randomly selected, and it is generated from a random sequence

, all tests related to  and its induced tests pass.

The idea of the induction proof is as follows:

1. Prove that  holds for the most basic case when 

2. Assume  holds for , prove that  holds for 

This will prove the proposition.

When , by the definition of ,

 

The probability of FRI QUERY passing naturally equals .

Assuming  holds for , now analyze . If  is not calculated correctly according to equation , then
, otherwise, according to the definition

 

This indicates that  is the average of the values of  on the coset . By the induction hypothesis, it is

the probability that all tests related to  pass, therefore  holds for .

Lemma 8.2 needs to estimate the probability in the FRI QUERY phase. Recall the protocol of the batched FRI QUERY phase, there are
two places involving random numbers:

1. In step 2 of the protocol, use  random numbers  to batch , which corresponds to the case of
affine space, and will use the conclusion corresponding to Theorem 7.4.

2. In step 3 of the protocol, use  for batching, corresponding to the case of curves, and

will use the conclusion of Theorem 7.2.

Proof of Lemma 8.2: Now we need to prove Lemma 8.2. By Proposition 8.5, we only need to prove that in the verifier's random
selection, with probability greater than ,

 



If we prove the above holds, it means that when selecting random numbers in , if , then its probability is less
than or equal to , which proves Lemma 8.2.

 Question

Why isn't it "with probability greater than " here?

The proof idea is to first define a series of bad events , where the probability of some events occurring is the sum of
the probabilities of each event occurring, proving that this probability is less than or equal to . Then assuming that no bad events
occur, prove that equation  holds.

Let  be the event

 

By the definition of , event  is

 

 Question

What exactly does  mean here? What's the difference between it and ? Does it represent the constant 1?

Therefore, this event  mainly depends on the random numbers . According to the assumption in the lemma, the

maximum correlated agreement density of  with  does not exceed .

Recall Theorem 7.4: Theorem 7.4 (Weighted correlated agreement over affine spaces – Version II). Let  and  be as
defined in Theorem 1.2. Let  and let  be an affine subspace. Let

 be a vector of weights, whose values all have denominator  . Let  and let

 

Suppose

 

Then  have at least  correlated  -agreement with  , i.e.  such that

 

Its contrapositive is: If  have at most  correlated  -agreement with , then

 

By the contrapositive of Theorem 7.4, taking ,  and , we have

 

Note that according to Theorem 7.4 and Theorem 1.2, , , .

Let's derive

 



Since

 

By the condition  in the theorem,  is an increasing function when , so
, while the right side of the above equation , satisfying

. From this, we get that  (not equal) holds. Then

 

Thus

 

Let

 

We get

 

Now fix . Define event  as

 

 Notes Understand event . According to the definition

 

It measures, after constructing  from  and random number , finding  in  that make  consistent

with a polynomial  in , then calculating the sum of the expected values of the  weights of the elements in the
corresponding cosets in  for these .

On the right side of equation 

 



 measures the probability of passing in the FRI QUERY phase when querying  from .

Event  aims to define such events: for  constructed from  and , for a polynomial  in , take out

the set of points  that make their values equal, calculate the sum of the expected  weights of the cosets corresponding to
these points, and the ratio to the size of .

Fix  and , then event  is determined by the random number . According to the definition of , we have

 

Only when the condition  is satisfied,  will be equal to . Naturally, we can get

 

Therefore, if event  does not occur, then according to equation , we can get

 

Then

 

Let . According to the definition, expanding , we get that event  is

 

where  are the functions obtained from  as defined in the FRI protocol (see Proposition 8.1). This is
exactly the case handled by Theorem 7.2.

 Recall Theorem 7.2

Theorem 7.2 (Weighted correlated agreement over curves – Version II). Let  and  be as defined in Theorem 1.2. Let
 . Let  be a vector of weights, whose values all have denominator  . Let  and

let

 

Let

 

and suppose

 

Then  have at least  correlated  -agreement with  , i.e.  such that

 

In Theorem 7.2, take . At this time, we are analyzing the case of , so  in the theorem, then
. Since we are analyzing ,  in equation . According to Theorem 7.2, if

 

where,

 



If the above condition is satisfied, referring to Theorem 7.2, we have

 

Satisfying equation , therefore by Theorem 7.2, there exists a set , and codewords , such that 
and  are consistent on , and . Recalling equation , we know

 

The invertible interpolation mapping  maps  to . Using its inverse mapping, i.e., the evaluation

mapping, for each , apply this inverse mapping to . Let ,

then the result after application is

 

We can get function , for each  we have

 

Therefore, since , we have . Moreover, according to the definition

 



This contradicts the definition of : . This means that the assumption we made

when applying Theorem 7.2 does not hold, that is, the following equation holds:

 

Therefore, if event  does not occur, according to equation , for all  we have:

 

According to equation , we get

 

If the probability of event  or some  occurring is estimated as

 

Let's estimate . Since for  we have , therefore

 

 Another proof method: using geometric series summation



 

 Question

Is there a more concise way for the above proof?

Therefore

 

In summary, we have obtained that when some bad events  occur, their probability is strictly less than

 

When no bad events occur, the following equation holds

 

At this point, we have proved that equation  holds, thus proving Lemma 8.2.
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