
  Prover Computation Complexity Proof Length Verifier Computation Complexity Query Complexity Round Complexity

Testing [RS92]

FRI [BBHR18b]

Dive into BBHR18-FRI Soundness  
Jade Xie jade@secbit.io

Yu Guo yu.guo@secbit.io

This article mainly focuses on explaining the paper [BBHR18b] published by Eli Ben-Sasson et al. in 2018, with emphasis on the completeness
and soundness proofs of the FRI protocol. In this paper, they proposed a new IOPP (Interactive Oracle Proof of Proximity) for Reed-Solomon
(RS) encoding, called FRI (Fast RS IOPP). Subsequently, in [BBHR18a], they used the FRI protocol to construct a practical ZK system, which is the
STARK we are familiar with.

Primary Problem  
For a set of evaluations  in a finite field , assuming the number of elements in  is , given a rate parameter , the encoding

 represents the set of all functions , where  is the evaluation of a polynomial of degree , i.e., there exists a

polynomial  of degree  such that  and  are consistent on .

The main focus of the paper is the RS proximity problem: Assuming we can obtain an oracle about the function , the Verifier needs
to distinguish with high confidence and low query complexity which of the following situations  belongs to:

1. 

2. 

In other words, either  is a codeword in the RS encoding , or the relative Hamming distance between  and all codewords in
 is greater than the proximity parameter . A natural idea is that the verifier can query  times and then determine which of

the above situations  belongs to. If it belongs to the first case, accept; if it belongs to the second case, reject. The query complexity at this
time is . When calculating the complexity of the Testing method, no additional information is provided to the verifier, so it is said
that the computational complexity for the prover to try to convince the verifier that  is , the number of interactions is , and
the length of the proof generated is . Comparing the complexity of this method (Testing, [RS92]) with FRI, the table below shows ([BBHR18b]).

As can be seen, the prover's computational complexity in FRI is strictly linear, and the verifier's computational complexity is strictly
logarithmic, while the query complexity is logarithmic ([BBHR18b]).

FRI Properties  
As mentioned above, FRI is a type of IOPP. Below is the definition of IOPP.

Definition 1 [BBHR18b, Definition 1.1] (Interactive Oracle Proof of Proximity (IOPP)). An -round Interactive Oracle Proof of Proximity (IOPP)
 is a ( )-round IOP. We say  is an ( -round) IOPP for the error correcting code  with soundness

 with respect to distance measure  , if the following conditions hold:

First message format: the first prover message, denote  , is a purported codeword of  , i.e., 

Completeness: 

Soundness: For any  , 

This means that the Prover and Verifier will interact for  rounds, and need to satisfy three conditions.

1. The first message  is the codeword initially claimed by the Prover to be in .

2. Completeness: For an honest Prover, if  is in , then the Verifier will definitely output accept.

3. Soundness: This analyzes the probability of rejection after interaction with a malicious Prover. In the definition, soundness
 is a function with variable , which also indicates that when analyzing soundness, we consider a malicious

Prover, i.e., initially . In this case, the Prover and Verifier interact to calculate the probability of rejection, and the
lower bound of this probability is . Since this represents a probability, naturally the function value of  is in the closed
interval .

FRI Protocol  
Below is an excerpt of the description of the FRI protocol from the paper [BBHR18b].

Definitions and Notations  

Interpolant For a function  ,  , let  denote the interpolant of  , defined as the unique polynomial
 of degree less than  whose evaluation on  equals  , i.e.,  . We assume the interpolant

 is represented as a formal sum, i.e., by the sequence of monomial coefficients  .

Subspace polynomials Given a set  , let  be the unique non-zero monic polynomial of degree  that
vanishes on  . When  is an additive coset contained in a binary field, the polynomial  is an affine subspace polynomial, a special
type of a linearized polynomial. We shall use the following properties of such polynomials, referring the interested reader to [LN97, Chapter
3.4] for proofs and additional background:

1. The map  maps each additive coset  of  to a single field element, which will be denoted by  .

2. If  are additive cosets, then  is an additive coset and 
.
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Subspace specification Henceforth, the letter  always denotes an additive coset in a binary field  , we assume all mentioned additive

cosets are specified by an additive shift  and a basis  so that  ; we assume 

and  are agreed upon by prover and verifier.

COMMIT Phase  

The number of rounds in the protocol is  , where  , and  represents the code rate. In the -th round of the

COMMIT phase,  , the Verifier can access an oracle of a function  submitted by the Prover, where
 , and the space  is fixed in advance, particularly, they do not depend on the Verifier's messages.

FRI-COMMIT: Common input:

Parameters  , all are positive integers: – rate parameter  : logarithm of RS code rate ( ) – localization parameter  :

dimension of  (i.e., ); let  denote round complexity – : round counter

A parametrization of  , denote  (notice );

 ,  ; let  and denote 

Prover input: , a purported codeword of 

Loop: While  :

1. Verifier sends a uniformly random 

2. Prover defines the function  with domain  thus, for each  :

Let  be the coset of  mapped by  to  ;

 ;

 ;

3. If  then:

let  for  defined in step 2 above;

let  ;

let  ;

prover commits to first  coefficients of  , namely, to 

COMMIT phase terminates;

4. Else (  ):

let  for  defined in step 2 above;

prover commits to oracle 

both parties repeat the COMMIT protocol with common input

parameters 

a parametrization of  and  ,  and prover input 
defined at the beginning of this step;

QUERY Phase  

FRI-QUERY: verifier input:

parameters  as defined in the COMMIT phase

repetition parameter 

sequence of rate-  RS-codes , where  and ; (notice
);

sequence of affine spaces , each  is of dimension  and contained in  ;

transcript of verifier messages 

access to oracles 

access to last oracle  for  ;

Terminal function reconstruction:

query  ;(a total of  queries)

let  ;

let  be the evaluation of  on  ; (notice  )

Repeat  times: {

1. Sample uniformly random  and for  let

 be the coset of  in  that contains 

2. For  ,



query  on all of ; (a total of  queries)

compute ; (notice )

3. round consistency: If for some  it holds that

 

then reject and abort;

}

Return accept

Main Properties of the FRI Protocol  
The following theorem gives the main properties of the FRI protocol, including Completeness, Soundness, Prover complexity, and Verifier
complexity. In fact, the paper also provides a slightly simplified version, see [BBHR18b] Theorem 1.3, which can be proved by setting 
and  in the theorem below. Here we mainly explain this more complex version.

Theorem 1 [BBHR18b, Theorem3.3] (Main properties of the FRI protocol). The following properties hold when the FRI protocol is invoked on
oracle  with localization parameter  and rate parameter  (and rate ) such that  :

1. Completeness If  and  are computed by the prover specified in the COMMIT phase,
then the FRI verifier outputs accept with probability 1.

2. Soundness Suppose  . Then with probability at least

 

over the randomness of the verifier during the COMMIT phase, and for any (adaptively chosen) prover oracles  the QUERY
protocol with repetition parameter  outputs accept with probability at most

 

Consequently, the soundness of FRI is at least

 

3. Prover complexity The  step of commit phase can be computed by a parallel random access machine (PRAM) with concurrent read
and exclusive write (CREW) in  cycles — each cycle involves a single arithmetic operation in  — using  processors and
a total of  arithmetic operations over . Consequently, the total prover complexity is at most  arithmetic operations, which
can be carried out in at most  cycles on a PRAM-CREW with  processors.

4. Verifier complexity Verifier communication during the COMMIT phase equals  field elements; query complexity (during QUERY phase)

equals . On a PRAM with exclusive read and exclusive write (EREW) with  processors, the verifier's

decision is obtained after  cycles and a total of  arithmetic operations in .

In the second item, the Soundness conclusion, a parameter  is given first. Here,  is not actually
the common relative Hamming distance. Below is the definition of this measure, along with an explanation of its relationship with the relative
Hamming distance.

Block-wise Distance Measure  

Definition 2 [BBHR18b, Definition3.2] (Block-wise distance measure). Let  be a partition of a set  and  be an alphabet.
The relative -Hamming distance measure on  is defined for  as the relative Hamming distance over  ,

 

Thus, for  let .

To better understand this definition, in the FRI protocol, consider the block-wise distance on , i.e., replace the set  in the above definition

with  in step  of the FRI protocol, and replace the alphabet  with . In step , we can determine the set .  can actually be set as
the kernel of the mapping , which is the set of elements in  that are mapped to the identity element  in  by , expressed
mathematically as

 

Then the set  can be partitioned by the cosets of . Assuming it is divided into  sets, the partition of  can be denoted as

. Then we briefly write

 

For two functions , both with domain  and codomain , this Block-wise distance now represents the ratio of the number of

cosets in  where these two functions are not completely consistent. For example, in  (assuming ), if the

function values of  and  are not completely identical only on the two sets  and , i.e.,  and , and the

functions  and  are completely consistent on the remaining cosets, then we can calculate .



The above  refers to the measure between two elements in . Below, we explain the block-wise distance measure corresponding
to an element  and a subset  (  is naturally a subset of ), expressed as

 

Its meaning is to traverse all codewords  in the set , calculate these , and the smallest value among them is
. Regarding this Block-wise distance measure, an important inequality is

 

This equation will be repeatedly used in the Soundness proof of FRI, which is quite important. Here's its proof.

Proof: First, prove the left half of the inequality, i.e., . There always exists such a polynomial , whose
degree , and at the same time . Below we explain the existence of . We construct as follows: In

the partition set , we can obtain the sequence of sets  in order.

Continuously select the first  points , obtain the corresponding values of  for these points

, and perform Lagrange interpolation with these point values to obtain a polynomial  of degree

. It's easy to see that  constructed in this way belongs to . At the same time, according to the previous

construction, we find that on the set , the function values of  and  are completely equal

(here,  points exactly fully occupy  sets, without the situation where the last few points only occupy part of the last set, this is
because  and  are chosen to be powers of 2, which can be evenly divided). Then we can calculate

 

Therefore,  calculates the minimum value under the measure  between elements in  and , which certainly
won't exceed the distance of the found , thus proving the left half of the inequality . Next, prove the
right half of the inequality . Assume , without loss of generality, assume 

and  are not completely consistent on the cosets , and are completely consistent on the

remaining set . Then considering all points on ,  is at most inconsistent with  on these

 points , thus indicating that . Furthermore, if we set

, we can deduce .

Theorem 1 Completeness Proof  
Below is an explanation of the completeness proof in Theorem 1. Let's restate the completeness:

Completeness If  and  are computed by the prover specified in the COMMIT phase,
then the FRI verifier outputs accept with probability 1.

Completeness states that for an honest Prover, if the initial function  is in the  encoding space, then through the FRI's COMMIT
phase, a series of functions  will be produced, and the Verifier will definitely output accept after the QUERY phase.

First, a recursive lemma is presented, which is then used to prove completeness. The lemma states that if  at step , then in the
COMMIT phase, the Verifier will randomly select  from  and send it to the Prover. The Prover uses this random number to construct the

next function . For any  in , the constructed  is in the  space. The formal statement of the recursive lemma is as

follows, and its proof will be explained later.

Lemma 1 [BBHR18b, Lemma 4.1] (Inductive argument). If  then for all  it holds that  .

The idea of the completeness proof is that in the QUERY phase, the Verifier mainly checks if round consistency holds in step 3. If it doesn't
hold for any , it will immediately output reject. Only when the checks pass for all  will it finally output accept. For

, according to the construction process of  in the COMMIT phase, round consistency will pass. For , based on the
initial condition of completeness , this theorem recursively shows that . Finally, based on this conclusion, it is shown
that round consistency will also pass in the QUERY phase, and thus the Verifier will definitely output accept. The specific completeness proof is
as follows.

Proof of Completeness in Theorem 1: For an honest Prover, for any function , in step 2 of the COMMIT phase, for any , construct

 

Based on this construction, round consistency will definitely pass in step 3 of the QUERY phase, i.e.,

 

holds.

We only need to prove that round consistency also passes for . From the completeness assumption, we know , and by
Lemma 1 recursively, we get . Then there must exist a polynomial  of degree  such that  and 

are completely consistent on . Therefore, the Prover will send  coefficients  of  in step 3 of the

COMMIT phase. The Verifier will construct  based on the  coefficients sent in the "Terminal function

reconstruction" stage of the QUERY phase, and then obtain the function  based on . The function  is the evaluation of 
on . We can deduce that . Naturally, it will pass the round consistency check for the 
round, i.e.,

 

Thus, it is proved that the Verifier will definitely output accept.

Introduction of Proposition 1  



Before proving Lemma 1, we first present an important proposition, and then use this proposition to prove Lemma 1. In the following
proposition, lowercase letters  are used to represent elements in the field, and uppercase letters  are used to represent variables.

Claim 1 [BBHR18b, Claim 4.2]. For every  there exists  satisfying

1.  for all 

2. 

3. If  then 

This proposition is quite important for understanding the FRI protocol. Vitalik gave a specific example in the "A First Look at Sublinearity"
section of his blog post STARKs, Part II: Thank Goodness It's FRI-day, which already shows the prototype of the FRI protocol. Let's revisit this
example from the perspective of Proposition 1.

Assume the size of the finite field  is , and let the polynomial  have a degree , so we have
. According to Proposition 1, there must exist a bivariate polynomial  satisfying:

1. For , we have , where 

2. 

3. Since , we have 

Now the Prover wants to prove to the Verifier that the degree of  is indeed less than . The article uses intuitive geometric figures to
illustrate the proof process.

In the figure, the horizontal direction of the square represents the variable , with a range of , totaling  elements, while the vertical
direction represents the variable , with a range of . A point  in the square corresponds to the calculated value of 
. For points  on the diagonal of the square, satisfying , we have .

The proof process is as follows:

1. The Prover commits to all points in the square regarding the evaluation of , for example, using a Merkle tree for commitment.

2. The Verifier randomly selects about a few dozen rows and columns. For each selected row or column, the Verifier will request samples of
about 1010 points, ensuring that one of the required points in each case is on the diagonal. For example, if the Verifier selects the 5th
column, then , and 1010 sample points need to be selected. The x-coordinate of these points is already determined, so only the y-
coordinate needs to be randomly selected. By selecting  in the y-coordinates, it ensures that the point  is on the
diagonal.

3. The Prover replies with the values of  corresponding to the points requested by the Verifier, along with the corresponding Merkle
branches, proving that they are part of the data originally committed by the Prover.

4. The Verifier checks if the Merkle branches match, and for each row or column, the Verifier verifies whether the points provided by the
Prover really correspond to a polynomial of degree . The Verifier can verify this by interpolating these points.

The original text mentions:

This gives the verifier a statistical proof that (i) most rows are populated mostly by points on degree  polynomials, (ii) most
columns are populated mostly by points on degree  polynomials, and (iii) the diagonal line is mostly on these polynomials. This
thus convinces the verifier that most points on the diagonal actually do correspond to a degree  polynomial.

These points and conclusions can be linked to the three items given in Proposition 1:

1. For most rows, corresponding to polynomials of degree , which indicates that .

https://vitalik.eth.limo/general/2017/11/22/starks_part_2.html


2. For most columns, corresponding to polynomials of degree , which indicates that .

3. The diagonal is mainly composed of points on these polynomials, which indicates that the values of these points satisfy .

This also shows that most points  on the diagonal correspond to a polynomial of degree , and because , it
convinces the Verifier that the degree of the polynomial  is .

In summary, if we want to prove that the degree of a polynomial  is less than a certain value, according to Proposition 1, there must exist
a bivariate polynomial  that can be associated with . First, we have , and the remaining two conclusions are
about the degrees  and  of , which correspond to the degrees of the polynomials represented by the horizontal and
vertical lines in the figure, respectively. In fact, the above steps can be recursively applied, which corresponds to the "And Even More
Efficiency" section in the article, describing the process of the FRI protocol.

Below is the proof of Proposition 1.

Proof of Proposition 1: Let , i.e., interpolate the function  on  to obtain the polynomial . Let  denote
the bivariate polynomial ring over the finite field ; first sort the monomials by their total degree, then by their -degree. Let

 

be the remainder of  divided by . From this definition, we can deduce that there must exist a quotient
 such that

 

For  and , substituting into the rightmost term of the above equation, we get
. Therefore, , and since  is

obtained by interpolating  on , we have , which proves the first item in the proposition.

From the sorting of monomials, we can deduce that the defined remainder  satisfies

 

thus the second item of Proposition 1 holds.

Finally, we prove the third item of Proposition 1. From the condition , we can deduce . According to
the division rule and the monomial sorting rule, we get

 

Thus, the third item of Proposition 1 is proved.

Proof of Lemma 1  

Using the notation from Proposition 1. From the third item of the proposition, we have  for any . Next, we prove

 

If this equation holds, it proves that , which demonstrates that .

To prove this equation, first fix , let  be the set satisfying , which is also the coset of  in . From the
construction of , we know

 

From the first item of Proposition 1, we get

 

From the second item of Proposition 1, we know that , so we can treat  as a formal variable and obtain

 

Then let , the evaluations of the polynomials on both sides at  must be the same. Thus, we get

 



Naturally, for any , we have

 

Thus, the proof is complete.

Analysis of Soundness Proof in Theorem 1  
This section mainly explains the proof idea of soundness in Theorem 1. First, we give several definitions used in the proof, then explain two
important lemmas, and finally prove soundness based on these two lemmas.

Round Consistency and Distortion Set  

The difficulty in analyzing soundness lies in how to accurately estimate the probability that any malicious prover will pass the protocol through
interaction with the verifier. To make an accurate estimation, we need to consider where errors might occur in the protocol process. If we can
estimate the probability of error for all these error processes without any loss, and then comprehensively analyze, we can obtain the
soundness. In this process, to accurately estimate these possible error situations, we need to accurately describe these estimates, that is, we
need to quantify them. Below are some necessary definitions in this process.

At step , given oracles for  and , and the random number  given by the Verifier.

 Question

Is there a mistake in the paper here? Should it be changed to ?

Inner-layer distance The inner-layer distance of the th step is the -distance of  from .

 

This definition is the block-wise distance of step  mentioned earlier.

Round error For , the th round error set is a subset of , defined as follows:

 

The round error set describes those elements in  where the Verifier will fail the round consistency test in the th round. The
corresponding probability is the th round error .

 

Closest codeword Let  denote the closest codeword to  in  under the  measure. We know that the  measure

is a metric in the coset partition set  of . Let  denote the "bad" cosets in the partition  where  and the
codeword  are inconsistent, i.e.,

 

Putting these "bad" cosets in  together forms the set , which we can see is a subset of , where each element is a "bad"

coset.

If , then according to the inequality about the block-wise distance  mentioned earlier, we can get

 

According to the bound of relative Hamming distance, unique decoding is possible at this time. Based on , a unique  can be decoded,

so  is unique at this time, and thus  can also be uniquely determined.

Distortion set For , the distortion set of  is

 

Note that the measure used above is the relative Hamming distance. We can understand this distortion set as follows: we know that the
Verifier will select a random number  from the finite field  and send it to the Prover. The Prover constructs the next  based on the

 sent by the Verifier and . Then we look at the relative Hamming distance between the constructed next  and . If we give

a value , we look at which  in  will cause the constructed  to have a minimum relative Hamming distance from the encoding

space  less than the given parameter . To understand further, it's considering all  on the field , looking at which  will have

a certain distance from the entire encoding space , with this distance parameter being at most . According to the condition , we

know that  has at least a positive distance to the encoding space, definitely not in the  space.

So what error situations does the distortion set consider? It starts from the perspective of the Verifier's behavior, considering the situations
where the Verifier's random number selection process may lead to not being in the encoding space.

Soundness Proof Idea  

We just mentioned that the distortion set considers possible errors from the process of the Verifier selecting random numbers. Then another
perspective is the errors produced by the Prover in the construction process or during the COMMIT phase. So when we want to estimate
soundness, we consider the following two situations where errors may occur:

1. Errors caused by the Verifier selecting random numbers  from .

2. Errors caused by the Prover in the COMMIT phase.



This gives us the general idea for analyzing soundness: first estimate the probability of the first situation occurring, then assume the first
situation doesn't occur and estimate the probability of the second situation occurring. Finally, analyze the probability of both situations
occurring simultaneously, which gives us the soundness we want.

To estimate the probability of the first situation, we first present a pair of lemmas about the distortion set, and then use these lemmas to
prove soundness. These two lemmas consider different values of . We know that in the process of decoding a code, there will first be a
relative Hamming distance parameter , and we consider two cases for the value of :

1. If , then the decoding is unique, i.e., unique decoding.

2. If , then the decoding results in a list, which is List decoding.

 Notes

To better understand List Decoding, here's its definition:

Definition 2 [Essential Coding Theory, Definition 7.2.1] Given , , a code  is -list decodable if for every
received word ,

 

This means that given a relative Hamming distance parameter  in advance, as well as an upper limit  on the length of the list, for each
received message , in the encoding space , as long as the relative Hamming distance between the codeword  and the message  is
less than or equal to , we consider  to be a valid decoding. At the same time, it requires that the number of valid encodings  that
meet this distance condition does not exceed , then we say this encoding is -list decodable.

According to the Hamming distance, there is such a property:

Proposition 1 [Essential Coding Theory, Proposition 1.4.2] Given a code , the following are equivalent:

1.  has minimum distance ,

2. If  is odd,  can correct  errors.

3.  can detect  errors.

4.  can correct  erasures.

Suppose the relative Hamming distance of  is , then . According to the above property, we know that for , the proportion of
encodings that can be corrected in the worst case is . And from the Singleton bound, we know,

 

Therefore, when the proportion of erroneous encodings is , these errors can be corrected, that is, unique encoding is possible.

Now let's formally present this pair of lemmas. Lemma 3 describes the case where the decoding radius exceeds the unique decoding bound
, while Lemma 4 talks about the case where the decoding radius is less than , i.e., unique decoding.

Lemma 3 [BBHR18b, Lemma 4.3] (Soundness above unique decoding radius). For any  and  such that 

 

Lemma 4 [BBHR18b, Lemma 4.4] (Soundness within unique decoding radius). If  then

 

Moreover, suppose that for  the sequences  and  satisfy

1. for all  we have 

2. for all  we have 

3. for all  we have 

then

 

and consequently

 

According to the definition of the distortion set, these two lemmas are talking about the probability of the Verifier selecting a random number
 entering the distortion set under different decoding radii .

The conclusion following the "moreover" in Lemma 4 states that if the following conditions are met:

1. For all , unique decoding is satisfied, that is, .

2. For all , in , select the closest codeword  to , and the next function constructed with the random number

 is , assuming it equals the closest codeword to  in , i.e., satisfying .

3. For all , the random number  has not entered the distortion set, i.e., .

Then the conclusion is that in the QUERY phase, if  is selected from the "bad" coset , then the Verifier will definitely reject in the QUERY
phase, i.e.,

 



Thus, we can conclude that if  is selected from the entire , the probability of the Verifier rejecting in the QUERY phase is at least ,

i.e.,

 

Now that we've done the preparation work, let's start proving the soundness of the protocol. So far, considering the possible error situations
mentioned earlier, the soundness proof idea is as follows.

1. In the COMMIT phase, the Verifier may choose random numbers from the distortion set. Now the conclusions of Lemma 3 and Lemma 4
can help us estimate the probability of this happening. We call it a "bad" event when the Verifier selects a random number  from the
distortion set. The Verifier will select a total of  random numbers, denoted as . The events of selecting a random
number from the distortion set in each round are denoted as . We estimate the bound on the probability of some "bad"
events occurring, which is at most

 

2. In the QUERY phase, the Verifier may reject. Assuming situation 1 does not occur, under this condition, we estimate the bound on the
probability of the Verifier rejecting in the QUERY phase. The probability of rejection for a complete single round is at least

 

3. Considering both situations 1 and 2 occurring, and considering that the Verifier repeats the QUERY phase  times, we can obtain that the
soundness of the FRI protocol is at least

 

 Thoughts

There is indeed a situation where the Verifier selects some random numbers  that fall into the distortion set, and then the 

constructed from an  that is quite far from the RS code (assume  far) and  does not maintain this distance, becoming smaller
than before, i.e., distorted. In this case, if we run the QUERY step, we don't have the ability to distinguish this situation. In other words, if

a polynomial  itself is not in , and at the same time it is less than  away from , the Verifier has the ability to

identify a polynomial that is  far from the RS code space. Now it's confused, lost, and believes that the Prover hasn't cheated, because
at this point it's indeed less than a given parameter , and finally outputs accept.

 Thoughts on the overall soundness probability derivation

First, let's consider a simplest ZK protocol (this example and image are from Zero Knowledge Proofs - Introduction and History of ZKP)

Now let's consider the soundness analysis, which is about calculating the probability of the Verifier rejecting when the Prover provides a
paper that is not two-colored. Here, assume the Prover uses a single-colored paper to interact with the Verifier, then each time the
Prover has at most a  probability of passing, that is, the Verifier outputting accept. The final probability is shown in the figure below.

https://www.youtube.com/watch?v=uchjTIlPzFo&ab_channel=BerkeleyRDICenteronDecentralization%26AI


If we analyze the soundness, that is the probability of the Verifier rejecting, the probability of accepting is at most , so the probability
of rejecting in one interaction is at least . If it is repeated  times, then the soundness is, for any ,

 

Similar to the process of analyzing the soundness of this simple example, let's look at the soundness of FRI. The probability in the simple
example considers the probability that we can make the Verifier finally accept from the Verifier's coin toss when inputting incorrect
knowledge. For the FRI protocol, it's about inputting an , it's not in , so how to measure it? We measure how far it is
from  under the block-wise measure, i.e., . Then we similarly consider that the Verifier's random
number toss gives the Prover a loophole to exploit. Because the Verifier threw some random numbers  that allowed the Prover to
pass the protocol with an incorrect . That is, some "bad" events occurred, making the selected random numbers enter the

distortion set, then the probability of the Verifier passing is at most .

There's another probability of the Verifier rejecting in the QUERY phase. In the above example, the Verifier directly judges whether the
coin' sent by the Prover is equal to the coin in the Verifier's hand, which is direct and doesn't introduce any randomness. If they are not
equal, it will directly reject, without any chance to exploit loopholes. So now let's examine if there's anything that includes randomness in
the QUERY phase of the FRI protocol? We'll find that in the QUERY phase, the Verifier will select a random number  from , and
then perform calculations to check if the round consistency can pass. This process of introducing randomness with  is the key to
estimating the probability of the Verifier rejecting in the QUERY phase.

To analyze more clearly, assume that the random numbers  selected by the Verifier in the COMMIT phase did not fall into the
distortion set. Then let's look at the randomness introduced in the QUERY phase, which is the selection of . We can use the moreover
conclusion of Lemma 4 to see that if all three conditions are met, it gives a possibility of rejection, which is at least , and then
consider what is the minimum probability of the Verifier rejecting when these three conditions are not simultaneously satisfied. At this

time, the sets  and  will be used in the proof process.

Now let's formally give the Soundness proof.

Theorem 1 Soundness Proof: Let ; for simplicity, assume  is even (using  would yield the same bound, but its analysis

would be a bit more complicated).

Part I - A series of bad events The -th bad event  is defined as follows:

large distance: If , then  is the event

 

small distance: If , then  is the event

 

Assuming the event  does not occur,

1. If , then according to the definition of event  and the distortion set, we can get

 

i.e.,

 

Therefore, we can get

 



And according to the Block-wise distance inequality, we get

 

2. If , then according to the definition of event  and the distortion set, we can get

 

According to the Block-wise distance inequality, we get

 

Let , then summarizing the above two cases, if the event  does not occur, we have

 

Part II - Bounding the probability of a bad event occurring Through Lemma 3 and Lemma 4, and our choice of parameter , we have

 

Since  is decreasing, therefore, when ,

 

When ,

 

In summary, we get

 

Therefore, for events , the probability that none of them occur is at least

 

Since , therefore

 

According to the definition of 

 

And , we can get

 

Then the probability inequality becomes

 



Let , , then when , . We can use sagemath to plot the images of these two functions for
comparison.

# Import SageMath's plotting functionality
from sage.plot.plot import plot

# Define functions
f(x) = log(x,2)
g(x) = x^(1/2)

# Plot function images
p1 = plot(f, (x, -10, 30), color='blue', legend_label='log(x,2)')
p2 = plot(g, (x, -10, 30), color='red', legend_label='x^(1/2)')

# Combine the two image objects and display
(p1 + p2).show()



No. Assumption 1 Assumption 2 Assumption 3 Remarks

1  

2  

3  

4 Rejection probability is at least 

 Proof that when ,  Let , taking the derivative of  we get

 

We can see that when , , so , thus .

According to the theorem condition , we have

 

Substituting the above inequality into the probability inequality, we get

 

Next, let's assume that no event  will occur and continue with the soundness proof.

Part III - Bounding soundness when no bad events occur First, let's recall the three assumptions for the sequences 
and  in Lemma 4:

1. for all  we have 

2. for all  we have 

3. for all  we have 

Since we assumed that no bad event  will occur, assumption 3 always holds. Therefore, whether the three assumptions hold or not has
the following four situations.

Let's first analyze the situation of No. 4, which is the simplest because Lemma 4 has already given that when all three assumptions are
satisfied, the probability of the Verifier rejecting is at least .

Next, let's consider the situations of No. 1 and No. 2 together. In this case, assumption 1 is not satisfied, and assumption 2 may or may not be
satisfied. So overall, it's that assumption 1 is not satisfied, i.e.,

 



Finally, let's consider the situation of No. 3, where the conditions are

 

In summary, there exist some  where one of the following two conditions holds:

1. 

2. 

Ignoring notation, let  represent the largest integer satisfying one of the above two conditions. Note that at this point  is uniquely
determined, because , so  is also unique. The following proposition states that the -th message of an honest Prover is
at least  far from  in relative Hamming distance.

Claim 5 [BBHR18b, Claim 4.5].

 

If the Prover knows  and , it can honestly execute according to the method in the COMMIT phase to construct , while 

represents the codeword in  closest to  under the -measure. At this time, the relative Hamming distance between

 and  is at least .

Proof: According to the previous analysis, let's discuss two cases.

1.  holds. Since our assumption is that no  event occurs, we can get from the analysis in Part I that

 

Since  represents the closest codeword to  in , therefore

 

Thus, the proposition holds.

2.  holds. To simplify the description, let . Because , we can get

 from Lemma 1. At the same time, obviously . From , by the

MDS property of RS code (relative Hamming distance equals ), we can get its relative Hamming distance
, so for two codes  and  in , their relative Hamming distance is at least . By the

triangle inequality, we get

 

From the assumption  and the inequality between block-wise measure and relative Hamming distance that we proved earlier,
we get

 

Rearranging the above triangle inequality, we can get

 

Thus, the proposition holds.

In conclusion, the proposition is proved.

The next proposition is

Claim 6 [BBHR18b, Claim 4.6].

 

Proof: From the definition of , we can get that for all ,

 

And from the definition of , we can get that for all ,

 

Therefore, for all , we have



 

According to the definition of relative Hamming distance, we get

 

Then

 

Therefore, for all , the following two equations must hold simultaneously:

1. 

2. 

Now we have obtained that the probability of the first equation holding is , so the probability of both equations

holding simultaneously must not exceed the probability of only requiring the first equation to hold, i.e.,

 

Therefore

 

Thus, the proposition is proved.

Combining the conclusions of Claim 5 and Claim 6, we get

 

i.e.,

 

Now consider the random number  used in the QUERY phase. First, according to the definition of , we know that if 
, then the Verifier will definitely reject in the QUERY phase. Next, we consider the probability of the Verifier rejecting in two cases based on
different .

If , then since , according to the definition of , at this time . In this case, if , the Verifier
will definitely reject, and

 

In this case, the probability of the Verifier rejecting is at least .

If , through our previous selection of , the selected  represents the largest integer satisfying one of the following two conditions

1. 

2. 

This indicates that the sequences  and  after  are not empty and all satisfy the three
conditions of Lemma 4. According to the conclusion of Lemma 4, if , then it will definitely be rejected in the QUERY phase. If

, the Verifier will also definitely reject. So this rejection probability is to see how large the union of these two sets is compared
to the size of . It has been proved that

 

Therefore, in this case, the probability of rejection is also at least .

Combining the above two cases, the probability of rejection is at least .

Combining with the previous analysis of the probability of rejection when the three conditions of Lemma 4 are satisfied, we can conclude that
under the condition that no bad events occur, that is, when the third condition of Lemma 4 always holds:

1. When the first two conditions of Lemma 4 both hold, the probability of the Verifier rejecting is at least .

2. When the first two conditions of Lemma 4 do not both hold, the probability of the Verifier rejecting is at least .



Since

 

Therefore

 

Thus we have

 

Now let's estimate , we get

 

Therefore, if no bad events occur, the probability of the Verifier rejecting is at least

 

Combining with the analysis in Part II, the probability of the Verifier selecting random numbers in the COMMIT phase is at least

 

Then for any Prover's oracle , with the repetition parameter  in the QUERY protocol, the probability of the Verifier outputting
accept is at most

 

Now let's analyze how to obtain the soundness of FRI. According to the definition of soundness:

For any , .

The main task of soundness analysis is to obtain the lower bound  of the rejection probability. First, let's consider, for any , what is
the maximum probability that the Verifier will output accept. Through the above analysis, we can consider two cases:

1. If bad events  occur, then the probability of the Verifier outputting accept is at most

 

2. If no bad events  occur, the probability of the Verifier outputting accept is at most

 

Therefore, for any , we can obtain the upper bound of the probability of the Verifier outputting accept, that is

 

Thus, for any , we have

 

Therefore, we obtain that the soundness of FRI is at least

 

This completes the proof of soundness.



Unique Decoding Radius — Proof of Lemma 4  

Proof: Since , the analysis mentioned in the definition of closest codeword has already pointed out that  and  are unique.
For a "bad" coset  in the set , i.e., , let

 

The set  represents those "misleading"  in , meaning that the interpolation polynomials

 are consistent, but since  comes from a "bad" coset, they are actually different low-degree
polynomials, i.e., . In other words, these  "mislead" us, even though they are not the same polynomial, the polynomials
interpolated using  on  are consistent. In the following, we will prove

 

Since , we get  from Lemma 1. For all , and , since

, therefore for , we have , naturally

, substituting  into the interpolation polynomial we get

, then . Since  is less than the unique decoding radius ,

combining  with , we have , we can conclude that  is the closest codeword

in  to  under Hamming distance. Therefore .

Is the reasoning here for describing  as the closest codeword in  to  under Hamming distance correct? It feels

like the explanation is not clear enough yet.

At the same time, these two functions have the same value at  if and only if one of the following two conditions holds:

1. 

2.  and 

From this, we can conclude that these two functions have different values at  if and only if both of the following conditions hold:

1. 

2.  or 

When condition 1 holds, the first case in condition 2  obviously doesn't hold, so naturally  holds, then we can get that
these two functions have different values at  if and only if

 

i.e.,

 

This indicates that  is inconsistent with the (unique) closest -codeword  on all  if and only if

. Then

 

While  represents the ratio of  to the number of cosets of ,  means that  and 

can be consistent on some , which naturally is less than . And  is consistent with the (unique) closest -

codeword  on some  if and only if . Therefore, we can get

 

This proves the equation we wanted to prove above, i.e.,

 

With this equation, now let's estimate the bound of the right side of the equation. In fact,  and  are two
different polynomials of degree less than , so , otherwise if , then according to the definition of ,

 and  would be consistent on more than  points, at which point the two interpolation polynomials would

be the same, which contradicts that  and  are two different polynomials. Therefore

 

This proves the first inequality of Lemma 4

 

Now let's consider the sequences  and  assumed in the Lemma. For simplicity, we assume that the evaluation of  on  yields the zero
function, denote this function as . If this is not the case, we can obtain the zero function through . Then



 

From the second assumption of the lemma, we get , then

 

Similarly, from the second assumption of the lemma, we get , and so on, by induction, we can get for all

, . In particular, .

Consider the sequence  in the QUERY phase, where . Let  denote the largest integer such that  holds.
Since , this defined  can be obtained. By definition , we can get , so . Combining with the third
assumption of the lemma that for all ,  and the equation we proved earlier

 

We can get , so . But from the definition of , we know that  is the largest integer such that

 holds, so for  larger than , we have . According to the definition of , , where 

represents those "bad" cosets, i.e.,

 

Here's the English translation of the provided text, maintaining all formulas and markdown formats:

While , we have . Thus, we obtain:

1. 

2. 

Therefore,

 

This indicates that the round consistency check will not pass in the QUERY phase, meaning the Verifier will definitely reject the sequence
 in the QUERY phase. This proves that

 

From the definitions of  and the set , we know that

 

Therefore,

 

This completes the proof of Lemma 4.

Exceeding the Unique Decoding Radius — Proof of Lemma 3  

To prove Lemma 3, we need the following improved version of Lemma 4.2.18 from [Spi95].

Lemma 7 [BBHR18b, Lemma 4.7] Let  be a polynomial of degree  and  a polynomial of degree
. If there exist distinct  such that  and  such that  and

 

then .

Proof of Lemma 3: We will prove the contrapositive of Lemma 3. First, let's recall Lemma 3, which states that for any  and , if

, then

 

Taking the contrapositive, we get:

Proposition 8 If for some , we have

 

then

 

This is equivalent to the following proposition:

Proposition 9 For some , if



 

then

 

Let's prove that Propositions 8 and 9 are equivalent.

Proof:  Proof by contradiction. Assume the conclusion of Proposition 9 does not hold, then

 

From the condition of Proposition 9, we can obtain

 

This satisfies the condition of Proposition 8, therefore

 

This contradicts the assumption . Thus, the conclusion of Proposition 9 holds.

 Proof by contradiction. Assume the conclusion of Proposition 8 does not hold, then

 

This means there exists a  such that

 

Then

 

From the condition of Proposition 8, we can obtain

 

From these two inequalities, we can see that  is already a lower bound for

 

So we can conclude

 

This satisfies the condition of Proposition 9, therefore we can obtain

 

This contradicts the assumption, so the conclusion of Proposition 8 holds.

 Question

Is there a more concise way to prove the equivalence of these two propositions?

Now that we have proven that Proposition 9 is equivalent to Lemma 3, let's prove Proposition 9. First, let's fix some constants: Let
, , , , and . From the definition of , we know that for any ,

. Recalling the definition of the closest codeword, we know that  is the closest codeword to

. Since we are considering a decoding radius that exceeds the unique decoding radius, there might be multiple codewords that are

equally close to . Here, we arbitrarily choose one of them.

Let  denote a polynomial satisfying , , and for each , the polynomial  is consistent with

. The polynomial  exists because, by definition,  is the evaluation of a polynomial of degree less than . According

to Proposition 1, let  represent the polynomial related to , i.e.,

 

From the second item of Proposition 1, we can obtain , and by definition, we know . Since
, from the condition of Proposition 9

 

we can obtain

 

Therefore , so . From the first item of Proposition 1, we can obtain that for any ,



 

According to the definition of the COMMIT phase, for each ,

Let  be the coset of , and map  to  through the mapping ;

.

Then we can obtain

 

Therefore

 

Note that  here. If we denote the random number  as , we can obtain that for any  and any ,

 

From the definition of the distortion set, we get

 

and the condition of Proposition 9

 

Through the above analysis, we have obtained

1. For all ,  is consistent with .

2. For any  and any , .

Then for any  and any , we have

1. 

2. 

Since  is the closest codeword to  in , from the definition of , we can obtain

 

The relative Hamming distance considers the proportion of inconsistencies between  and , so

 

 Why?

How to prove the existence of the following non-zero polynomial? How was it derived?

By constructing , there exists a non-zero polynomial

 

such that  at all points  where  and .

 Notes Regarding the existence of the non-zero polynomial , this is how I understand it. We have already obtained

 

As shown in the figure below, since , the existence of such a non-zero polynomial  is reasonable, with its value being 0
at these blue points in the figure.



area 

The polynomial  is also known as the error locator polynomial [Sud92] because its roots cover the set of error locations, where  is obtained
from a low-degree polynomial.

Since  and , from [Spi95, Chapter 4], there exists a polynomial  satisfying

 

such that

 

holds.

 Notes Regarding the existence of the polynomial , my current understanding is as follows. Let's consider the
reasonableness of its existence based on the degree of the polynomial: First, consider the variable . Since  and

, it's reasonable that there exists a  satisfying , and

 

Similarly, for the variable , since  and , it's reasonable that there exists a  satisfying
, and

 

 TODO

Refer to [Spi95, Chapter 4] to understand why such a polynomial would exist.

Why does  hold? Isn't it  and ?

Let  and , then from equation  we get

 Fix I believe the  in the paper here should be changed to .

 

and

 

From this, we can obtain  and .

From  and , we can obtain that for any row , , and similarly, for any column , . In
other words, there exist distinct  such that  and distinct  such that

.

From equation 

 

we can obtain .

 Why?

How is  obtained here? Is it because ?

Now we know  and , can it be derived from here?

From the previously derived  and  and the definition of , we can obtain

 

Combining the above derivations, we get



1. 

2. 

Thus,

 

At this point, combining the above analysis, the degree of polynomial  is , the degree of polynomial  is
, and there exist distinct  such that  and distinct  such that

, while

 

 Question

How is the degree of  being  obtained? Previously, we obtained .

Therefore, the conditions and assumptions of Lemma 7 are satisfied. From the conclusion of the lemma, we can obtain ,
which are polynomials in the ring . Let . We can obtain that for each row  where  is non-zero,

. Since ,  is zero in fewer than  rows, so the proportion of non-zero rows is at least .
Therefore, the proportion of rows satisfying  is at least .

According to Proposition 1, we know that  is

 

where

 

Therefore,  is consistent with the polynomial  of degree . Let  represent the coset of . If
 is satisfied on the coset , then based on the fact that the proportion of rows satisfying

 is at least ,  is consistent with the polynomial  on more than a  proportion of cosets .

 TODO

The understanding here is not very clear, and the explanation is not clear enough. To be improved. The original text:

In other words  agrees with some polynomial of degree  on more than a -fraction of cosets of  in .

 is consistent with some polynomial of degree  on more than a  proportion of cosets of  in . According to the
definition,  represents the proportion of inconsistent cosets, so naturally, we can conclude that , which completes
the proof of the lemma.
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