
Notes on Binius (Part II): Subspace Polynomial
Yu Guo yu.guo@secbit.io

Jade Xie jade@secbit.io

The FRI-Binus paper [DP24] discusses the Additive FFT algorithm based on Subspace Polynomial and provides a
perspective to understand the Additive FFT algorithm based on Novel Polynomial Basis in [LCH14] using odd-even
decomposition. This article directly introduces the Subspace Polynomial, and then introduces the Additive FFT algorithm
from the perspective of odd-even decomposition. This article omits the definition of Normalized Subspace Polynomial
for easier understanding. Normalization only affects the performance of the FFT algorithm and has no essential
difference from the simplified algorithm introduced in this article.

Since the algebraic structure on which Additive FFT relies is very similar to Multiplicative FFT on prime fields, knowledge
of Multiplicative FFT will help understand the content of this article.

Linear Subspace Polynomial
We continue to explore the Extension Field based on . Regardless of how is constructed, all elements form a
vector space, denoted as , and there exists a Basis that spans this vector space, denoted as

, or represented by the symbol :

Thus, any element can be written as a linear combination of Basis components:

At the same time, is also an additive group with the identity element . If is a linear subspace of ,
then is also an additive subgroup of . For , we can use a polynomial to encode all its elements, i.e., the root set
of this polynomial exactly corresponds to the set of all elements of . We denote this polynomial as . This
polynomial is also called the "Subspace Polynomial":

The polynomial can also be seen as the Vanishing Polynomial on the Domain , because for any , it
satisfies:

Linearized Polynomial

The Subspace polynomial introduced above is a so-called Linearized Polynomial because its definition satisfies the
following form:

The polynomial is called a Linearized Polynomial because each corresponds to a linear operator on the
extension field of . If all roots of are in the extension field , then for all , we have .
Moreover, if , then . Each can be viewed as a matrix , completing a linear

transformation on the vector space , such that:

mailto:yu.guo@secbit.io
mailto:jade@secbit.io

For Subspace Polynomials, each is a Linearized Polynomial. Conversely, for any Linearized polynomial
, all its roots form a linear subspace . For detailed proof, please refer to [LN97].

Linear Properties

Since each term of is of the form , it has additive homomorphism:

Let's try to prove the first equation simply. According to a common theorem in finite field theory (Freshman's dream):

Obviously, , because in binary fields, . So the following equation also holds:

Next, let's verify the additive homomorphism of :

Recursive Formula of Subspace Polynomial

For the subspace , it can be split into two disjoint sets:

Here , , then the subspace polynomials corresponding to ,
, satisfy the following relationship:

Let's take a simple example, assuming , consists of two parts, one part is , the
other part is each element in plus . Therefore, the number of elements in is . Here are all the
elements of :

We can easily verify: . Of course, can also be split into the product of and
. Let's try to break it down to the bottom:

Finally, the expansion of satisfies the pattern of , which is consistent with our conclusion above.

Homomorphic Mapping on Subspace

Because Subspace Polynomial is actually a kind of Vanishing Polynomial, and it also has additive homomorphism, we
can use Subspace Polynomial to define homomorphic mapping between subspaces.

For example, for , we define the subspace of and its Subspace Polynomial

Obviously, . If we apply to , we will get the following result:

The above equations show that is mapped to a set that is only half the size of , denoted as . This set is also
a subspace, , with dimension 2.

This is not a coincidence. According to the group isomorphism theorem, the Image of the homomorphic mapping
 satisfies , where is a quotient group, and . In the above example,

 is a homomorphic mapping, .

Chain of Mappings

For , we can still construct a Subspace Polynomial of Degree 2,

We can continue to map to a one-dimensional subspace . We only need to calculate and ,
these Basis components constitute :

Where the first component of the Basis of will be mapped to , and the second component is mapped to .

So far, we have obtained a chain of mappings:

Or it can be written as:

And each mapping reduces the dimension of the linear subspace by one, i.e., halves the size of the set. This algebraic
structure is key to our subsequent construction of FFT and FRI protocols.

It's not hard to prove that for any linear subspace, as long as we choose a Basis, we can construct Subspace Polynomials
of Degree 2 as mapping functions in sequence, then obtain a subspace with dimension reduced by 1 through mapping,
and repeat this process until the subspace is reduced to 1 dimension. Of course, different choices of Basis and different
choices of Subspace Polynomial will lead to different mapping chains. Choosing the appropriate mapping chain can
significantly improve the efficiency of computation.

Composition of Mappings

Composition of Mappings
We define the initial subspace of the mapping chain as , the subspace after mapping as , and the subspace after
 mappings as :

Given a set of Basis for , assumed to be , define Subspace Polynomial on the Basis,
and use it as the group homomorphism mapping function to reduce to . The Basis of the reduced linear

subspace needs to transform the Basis of along with to a new Basis. After switching to the new Basis, we
can define a new set of Subspace Polynomials .

Let's assume we start with , given a set of Basis , after mapping by , we get , and its
Basis :

Define on again:

Then, what is the relationship between produced by mapping and ? For any element , it is first

mapped to by , and then mapped to an element in by , so the value after two mappings can be written

as the composition of two mapping functions, . Let's simplify this composite function:

So we derived . This means that after two 2-to-1 mappings, it is equivalent to doing one 4-to-1
mapping, and the corresponding homomorphic mapping function is :

As shown in the figure below, both left and right mapping methods will result in :

Similarly, we can get the following conclusion, for the linear subspace after folds

And satisfies the following composite equation:

This composite mapping equation can be interpreted as: first do a mapping to get , then do a dimensional

mapping , which is equivalent to directly doing a dimensional mapping , both mapping to the same subspace

.

Similarly, we can also prove: if we first do a dimensional mapping , and then do a one-dimensional mapping
on the mapped subspace , we can also get the subspace :

More generally, we can prove the following important property, that is, doing a dimensional mapping on any subspace
 is equivalent to doing consecutive 1 dimensional mappings on it:

Polynomial Basis
For a univariate polynomial of degree less than , it has two common forms of expression,
"coefficient form" and "point value form". The coefficient form is the most common form we see:

where is the coefficient vector of the polynomial. In addition, the vector of unknowns
 forms a basis of polynomials, conventionally called the Monomial Basis, denoted as :

This basis vector can also be expressed in the form of Tensor Product:

The "point value form" of a univariate polynomial is called the Lagrange Basis representation. That is, we can uniquely
determine a polynomial of Degree less than N using N "coefficients" (please note that the concept of coefficients here is
broader than just the coefficients in the "coefficient form" representation).

Through polynomial division, we can obtain the coefficients of the polynomial on . For example, for a polynomial
 of degree 7, we can first calculate the coefficient of , that is, calculate the polynomial division:

, obtaining a coefficient and a remainder polynomial ; then calculate ,
obtaining the coefficient of , and so on. Finally, we can obtain the coefficient vector
of with respect to , such that:

Using the Subspace Polynomial discussed earlier, we can define a new set of Basis. According to its definition, the
degree of is exactly , similar to , so can also be used as basic materials
for constructing polynomial Basis. Following the definition of , we define the (Novel) Polynomial Basis :

Please note that unlike the papers [LCH14] and [DP24], we haven't introduced Normalized Subspace Polynomial here for
easier understanding. Returning to the above definition, we abbreviate each component as , defined as
follows:

Here means expanding the integer in binary, for example, if , then ,
. For example, when , according to the above definition, we can calculate a set of polynomial basis

It's easy to verify that the Degree of each Basis component is exactly , so forms a set of linearly
independent polynomial Basis. For any polynomial of Degree less than 8:

Similarly, we can use polynomial division to convert a polynomial between and .

Additive FFT
Similar to Multiplicative FFT, to construct Additive FFT, we need to define a mapping chain of additive subgroups in .
As mentioned earlier, Subspace Polynomials can be used to construct this mapping chain. At the same time, Subspace
Polynomials can also construct a set of polynomial Basis.

For convenience of demonstration, specify , . Following the idea of Multiplicative FFT, we split
the polynomial (of Degree 7) represented by into two polynomials with halved degrees:

Then we introduce two auxiliary polynomials , they are

According to the composition property of mappings we derived earlier, , ,
so we can get:

After substituting , we can split into an equation about and :

And the polynomials and are exactly defined on :

Rewrite the odd and even polynomials:

Structurally, this equation is very similar to the split in Multiplicative FFT; and the
 mapping also corresponds to the mapping. And under the mapping of

produces a subspace that is only half the size of the original:

So we can rely on recursive calls to find and , and then use the equation
 to get the value of on .

Let's assume the recursive call returns successfully, then we have obtained all the evaluations of and
on , denoted as and , defined as follows:

Then we can calculate all the evaluations of on , i.e., :

We implement this Additive FFT recursive algorithm in Python code as follows:

The function afft(f, k, B) has three parameters in total, which are the coefficient vector of the polynomial on
, the recursion depth , and the Basis of the current subspace .

Summary
The Additive FFT algorithm requires a mapping chain of subspaces constructed by Subspace Polynomials. The principles
introduced in this article are not limited to recursively constructed binary fields, but a more general algebraic structure.
The paper [LCH14] uses another recursive Additive FFT algorithm, we will introduce the differences between the two in
the next article, as well as the iterative Additive FFT algorithm (Algorithm 2) in the [DP24] paper.

References
[DP24] Benjamin E. Diamond and Jim Posen. "Polylogarithmic Proofs for Multilinears over Binary Towers". 2024.
https://eprint.iacr.org/2024/504

[LCH14] Lin, Sian-Jheng, Wei-Ho Chung, and Yunghsiang S. Han. "Novel polynomial basis and its application to
Reed-Solomon erasure codes." 2014 ieee 55th annual symposium on foundations of computer science. IEEE, 2014.
https://arxiv.org/abs/1404.3458

[LN97] Lidl, Rudolf, and Harald Niederreiter. Finite fields. No. 20. Cambridge university press, 1997.

def afft(f, k, B):
 """
 Perform the Additive Fast Fourier Transform (AFFT) on a given polynomial.

 Args:
 f (list): Coefficients of the polynomial to be transformed.
 k (int): The depth of recursion, where 2^k is the size of the domain.
 B (list): The basis of the domain over which the polynomial is evaluated.

 Returns:
 list: The evaluations of the polynomial over the domain.
 """
 if k == 0:
 return [f[0]]
 half = 2**(k-1)

 f_even = f[::2]
 f_odd = f[1::2]

 V = span(B) # the subspace spanned by B
 q = lambda x: x*(x+B[0])/(B[1]*(B[1] + 1)) # s^(i)_1 map
 B_half = [q(b) for b in B[1:]] # the basis of the mapped subspace

 e_even = afft(f_even, k-1, B_half) # compute the evaluations of f_even
 e_odd = afft(f_odd, k-1, B_half) # compute the evaluations of f_odd

 e = [0] * (2 * half) # initialize the list of evaluations
 for i in range(0, half):
 e[2*i] = e_even[i] + V[2*i] * e_odd[i]
 e[2*i+1] = e_even[i] + V[2*i+1] * e_odd[i]

 return e

https://eprint.iacr.org/2024/504
https://arxiv.org/abs/1404.3458

	Notes on Binius (Part II): Subspace Polynomial
	Linear Subspace Polynomial
	Linearized Polynomial
	Linear Properties
	Recursive Formula of Subspace Polynomial

	Homomorphic Mapping on Subspace
	Chain of Mappings

	Composition of {s}_1 Mappings
	Polynomial Basis
	Additive FFT
	Summary
	References

