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The FRI-Binus paper [DP24] discusses the Additive FFT algorithm based on Subspace Polynomial and provides a
perspective to understand the Additive FFT algorithm based on Novel Polynomial Basis in [LCH14] using odd-even
decomposition. This article directly introduces the Subspace Polynomial, and then introduces the Additive FFT algorithm
from the perspective of odd-even decomposition. This article omits the definition of Normalized Subspace Polynomial
for easier understanding. Normalization only affects the performance of the FFT algorithm and has no essential
difference from the simplified algorithm introduced in this article.

Since the algebraic structure on which Additive FFT relies is very similar to Multiplicative FFT on prime fields, knowledge
of Multiplicative FFT will help understand the content of this article.

Linear Subspace Polynomial  
We continue to explore the Extension Field  based on . Regardless of how  is constructed, all elements form a
vector space, denoted as , and there exists a Basis  that spans this vector space, denoted as

, or represented by the symbol :

 

Thus, any element  can be written as a linear combination of Basis components:

 

At the same time,  is also an additive group with the identity element . If  is a linear subspace of ,
then  is also an additive subgroup of . For , we can use a polynomial to encode all its elements, i.e., the root set
of this polynomial exactly corresponds to the set of all elements of . We denote this polynomial as . This
polynomial is also called the "Subspace Polynomial":

 

The polynomial  can also be seen as the Vanishing Polynomial on the Domain , because for any , it
satisfies:

 

Linearized Polynomial  

The Subspace polynomial introduced above is a so-called Linearized Polynomial because its definition satisfies the
following form:

 

The polynomial  is called a Linearized Polynomial because each  corresponds to a linear operator on the
extension field  of . If all roots of  are in the extension field , then for all , we have .
Moreover, if , then . Each  can be viewed as a matrix , completing a linear

transformation on the vector space , such that:
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For Subspace Polynomials, each  is a Linearized Polynomial. Conversely, for any Linearized polynomial
, all its roots form a linear subspace . For detailed proof, please refer to [LN97].

Linear Properties  

Since each term of  is of the form , it has additive homomorphism:

 

Let's try to prove the first equation simply. According to a common theorem in finite field theory (Freshman's dream):

 

Obviously, , because in binary fields, . So the following equation also holds:

 

Next, let's verify the additive homomorphism of :

 

Recursive Formula of Subspace Polynomial  

For the subspace , it can be split into two disjoint sets:

 

Here  ,  , then the subspace polynomials corresponding to , 
,  satisfy the following relationship:

 

Let's take a simple example, assuming ,  consists of two parts, one part is , the
other part is each element in  plus . Therefore, the number of elements in  is . Here are all the
elements of :

 

We can easily verify: . Of course,  can also be split into the product of  and
. Let's try to break it down to the bottom:

 

Finally, the expansion of  satisfies the pattern of , which is consistent with our conclusion above.

Homomorphic Mapping on Subspace  



Because Subspace Polynomial is actually a kind of Vanishing Polynomial, and it also has additive homomorphism, we
can use Subspace Polynomial to define homomorphic mapping between subspaces.

For example, for , we define the subspace  of  and its Subspace Polynomial 

 

Obviously, . If we apply  to , we will get the following result:

 

The above equations show that  is mapped to a set that is only half the size of , denoted as . This set is also
a subspace, , with dimension 2.

This is not a coincidence. According to the group isomorphism theorem, the Image  of the homomorphic mapping
 satisfies , where  is a quotient group, and . In the above example,

 is a homomorphic mapping, .

Chain of Mappings  

For , we can still construct a Subspace Polynomial of Degree 2,

 

We can continue to map  to a one-dimensional subspace . We only need to calculate  and ,
these Basis components constitute :

 

Where the first component of the Basis  of  will be mapped to , and the second component is mapped to .

So far, we have obtained a chain of mappings:

 

Or it can be written as:

 

And each mapping reduces the dimension of the linear subspace by one, i.e., halves the size of the set. This algebraic
structure is key to our subsequent construction of FFT and FRI protocols.

It's not hard to prove that for any linear subspace, as long as we choose a Basis, we can construct Subspace Polynomials
of Degree 2 as mapping functions in sequence, then obtain a subspace with dimension reduced by 1 through mapping,
and repeat this process until the subspace is reduced to 1 dimension. Of course, different choices of Basis and different
choices of Subspace Polynomial will lead to different mapping chains. Choosing the appropriate mapping chain can
significantly improve the efficiency of computation.

Composition of  Mappings



Composition of  Mappings  
We define the initial subspace of the mapping chain as , the subspace after mapping as , and the subspace after
 mappings as :

 

Given a set of Basis for , assumed to be , define Subspace Polynomial  on the Basis,
and use it as the group homomorphism mapping function to reduce  to . The Basis of the reduced linear

subspace  needs to transform the Basis of  along with  to a new Basis. After switching to the new Basis, we
can define a new set of Subspace Polynomials .

Let's assume we start with , given a set of Basis , after mapping by , we get , and its
Basis :

 

Define  on  again:

 

Then, what is the relationship between  produced by mapping  and ? For any element , it is first

mapped to  by , and then mapped to an element in  by , so the value after two mappings can be written

as the composition of two mapping functions, . Let's simplify this composite function:

 

So we derived . This means that after two 2-to-1 mappings, it is equivalent to doing one 4-to-1
mapping, and the corresponding homomorphic mapping function is :

 

As shown in the figure below, both left and right mapping methods will result in :

Similarly, we can get the following conclusion, for the linear subspace  after  folds

 



And  satisfies the following composite equation:

 

This composite mapping equation can be interpreted as: first do a  mapping to get , then do a  dimensional

mapping , which is equivalent to directly doing a  dimensional mapping , both mapping to the same subspace

.

Similarly, we can also prove: if we first do a  dimensional mapping , and then do a one-dimensional mapping
on the mapped subspace , we can also get the subspace :

 

More generally, we can prove the following important property, that is, doing a  dimensional mapping on any subspace
 is equivalent to doing  consecutive 1 dimensional mappings on it:

 

Polynomial Basis  
For a univariate polynomial  of degree less than , it has two common forms of expression,
"coefficient form" and "point value form". The coefficient form is the most common form we see:

 

where  is the coefficient vector of the polynomial. In addition, the vector of unknowns
 forms a basis of polynomials, conventionally called the Monomial Basis, denoted as :

 

This basis vector can also be expressed in the form of Tensor Product:

 

The "point value form" of a univariate polynomial is called the Lagrange Basis representation. That is, we can uniquely
determine a polynomial of Degree less than N using N "coefficients" (please note that the concept of coefficients here is
broader than just the coefficients in the "coefficient form" representation).

Through polynomial division, we can obtain the coefficients of the polynomial on . For example, for a polynomial
 of degree 7, we can first calculate the coefficient of , that is, calculate the polynomial division:

, obtaining a coefficient  and a remainder polynomial ; then calculate ,
obtaining the coefficient  of , and so on. Finally, we can obtain the coefficient vector 
of  with respect to , such that:

 

Using the Subspace Polynomial  discussed earlier, we can define a new set of Basis. According to its definition, the
degree of  is exactly , similar to , so  can also be used as basic materials
for constructing polynomial Basis. Following the definition of , we define the (Novel) Polynomial Basis :

 

Please note that unlike the papers [LCH14] and [DP24], we haven't introduced Normalized Subspace Polynomial here for
easier understanding. Returning to the above definition, we abbreviate each component  as , defined as
follows:

 



Here  means expanding the integer  in binary, for example, if , then , 
. For example, when , according to the above definition, we can calculate a set of polynomial basis

 

It's easy to verify that the Degree of each Basis component  is exactly , so  forms a set of linearly
independent polynomial Basis. For any polynomial  of Degree less than 8:

 

Similarly, we can use polynomial division to convert a polynomial between  and .

Additive FFT  
Similar to Multiplicative FFT, to construct Additive FFT, we need to define a mapping chain of additive subgroups in .
As mentioned earlier, Subspace Polynomials can be used to construct this mapping chain. At the same time, Subspace
Polynomials can also construct a set of polynomial Basis.

 

For convenience of demonstration, specify , . Following the idea of Multiplicative FFT, we split
the polynomial  (of Degree 7) represented by  into two polynomials with halved degrees:

 

Then we introduce two auxiliary polynomials , they are

 

According to the composition property of mappings we derived earlier, , ,
so we can get:

 

After substituting , we can split  into an equation about  and :



 

And the polynomials  and  are exactly defined on :

 

Rewrite the odd and even polynomials:

 

Structurally, this equation is very similar to the split  in Multiplicative FFT; and the
 mapping also corresponds to the  mapping. And  under the mapping of 

produces a subspace  that is only half the size of the original:

 

So we can rely on recursive calls to find  and , and then use the equation
 to get the value of  on .

Let's assume the recursive call returns successfully, then we have obtained all the evaluations of  and 
on , denoted as  and , defined as follows:

 

Then we can calculate all the evaluations of  on , i.e., :

 

We implement this Additive FFT recursive algorithm in Python code as follows:



The function afft(f, k, B)  has three parameters in total, which are the coefficient vector of the polynomial  on
, the recursion depth , and the Basis of the current subspace .

Summary  
The Additive FFT algorithm requires a mapping chain of subspaces constructed by Subspace Polynomials. The principles
introduced in this article are not limited to recursively constructed binary fields, but a more general algebraic structure.
The paper [LCH14] uses another recursive Additive FFT algorithm, we will introduce the differences between the two in
the next article, as well as the iterative Additive FFT algorithm (Algorithm 2) in the [DP24] paper.
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def afft(f, k, B):
    """
    Perform the Additive Fast Fourier Transform (AFFT) on a given polynomial.

    Args:
        f (list): Coefficients of the polynomial to be transformed.
        k (int): The depth of recursion, where 2^k is the size of the domain.
        B (list): The basis of the domain over which the polynomial is evaluated.

    Returns:
        list: The evaluations of the polynomial over the domain.
    """
    if k == 0:
        return [f[0]]
    half = 2**(k-1)

    f_even = f[::2]
    f_odd = f[1::2]

    V = span(B)                                # the subspace spanned by B
    q = lambda x: x*(x+B[0])/(B[1]*(B[1] + 1)) # s^(i)_1 map
    B_half = [q(b) for b in B[1:]]             # the basis of the mapped subspace
    
    e_even = afft(f_even, k-1, B_half)  # compute the evaluations of f_even
    e_odd  = afft(f_odd, k-1, B_half)   # compute the evaluations of f_odd

    e = [0] * (2 * half)                # initialize the list of evaluations
    for i in range(0, half):
        e[2*i]   = e_even[i] + V[2*i] * e_odd[i]
        e[2*i+1] = e_even[i] + V[2*i+1] * e_odd[i]

    return e
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