
Notes on FRI-Binius (Part I): Binary Towers
Yu Guo yu.guo@secbit.io

Jade Xie jade@secbit.io

Binary fields possess elegant internal structures, and Binius aims to fully utilize these internal structures to
construct efficient SNARK proof systems. This article mainly discusses the Binary Fields that Binius relies on at
its core and the construction methods of Extension Towers based on Binary Fields. Binary Fields provide
smaller fields and are compatible with various tool constructions in traditional cryptography while also being
able to fully utilize optimization of special instructions on hardware. There are two main advantages to
choosing Extension Towers: one is that the recursive Extension construction provides a consistent and
incremental Basis selection, allowing Small Fields to be embedded into Large Fields in a very natural way; the
other advantage is that multiplication and inversion operations have efficient recursive algorithms.

Extension Fields
Let's try to describe the concept of Extension Fields in simple language to lay the groundwork for our study of
Binary Towers. For in-depth learning, please refer to the strict definitions and proofs in finite field textbooks.

The prime field is a finite field with elements, where must be a prime number. It is isomorphic to ,
which means we can use the set of integers to represent all elements of .

We can form a Tuple with any two elements from the prime field, i.e., , and this Tuple also forms a
field with elements. We can verify this: , so we define the addition of Tuples as follows:

We can verify that forms a vector space, thus it is an additive group with the zero element being . The

next question is how to define multiplication. We want multiplication to be closed, i.e.:

The simplest approach would be to use Entry-wise Multiplication to define multiplication, i.e.,
, with the multiplicative identity being . This seems to make

multiplication closed. However, this doesn't ensure that every element has an inverse. For example,
multiplied by any Tuple can never result in , because the second part of the Tuple will always be .
Therefore, this kind of multiplication cannot form a "field".

In finite field theory, the multiplication operation of Tuples is implemented through polynomial modular
multiplication. That is, we view as the coefficients of a degree 1 polynomial, and similarly can
be viewed as the coefficients of another degree 1 polynomial. By multiplying these two, we get a degree 2
polynomial:

Then we take the modulus of the resulting polynomial with an irreducible degree 2 polynomial ,
obtaining a remainder polynomial. The coefficients of this remainder polynomial are . So we define the
new Tuple multiplication as follows:

mailto:yu.guo@secbit.io
mailto:jade@secbit.io

And we define as the multiplicative identity. Here we emphasize that must be an irreducible
polynomial. What would happen if were a reducible polynomial? For instance, if

, then the product of two non-zero elements and would
equal , breaking out of the multiplicative group. Strictly speaking, the appearance of Zero Divisors
disrupts the structure of the multiplicative group, thus failing to form a "field".

The next question is whether there exists an irreducible degree 2 polynomial . If doesn't exist, then
constructing a field would be out of the question. For the prime field , take any that is not a
square of any element, which in number theory belongs to the non-quadratic residue class, i.e.,
. If exists, then is an irreducible polynomial. Furthermore, how is the existence of
guaranteed? If is an odd number, then must exist. If , although doesn't exist, we can specify

 as an irreducible polynomial.

We now denote the field formed by the set of Tuples , along with the defined addition and multiplication
operations, as , which has elements. According to finite field theory, we can expand the binary Tuple to
an -ary Tuple, thus constructing larger finite fields .

For an irreducible polynomial over , it can always be factored in .
, where and are conjugates of each other, and they both belong to but

not to . According to the definition of extension fields, is a degree 2 algebraic extension, which is
isomorphic to the finite field we constructed earlier through modular multiplication with an irreducible
polynomial. Therefore, we can also use to represent any element in . Or further, we can view

 as a Basis of the vector space, any can be represented as a linear combination of the Basis:

This way, we can use the symbol to represent elements in , rather than the polynomial
representation . The "polynomial representation" of elements doesn't specify which irreducible
polynomial we used to construct the extension field, while using , the root of the irreducible polynomial, as a
way to construct the extension field eliminates any ambiguity.

Generalizing this concept to , for any element , it can be represented as:

Here is the root of the degree irreducible polynomial . Therefore, can be
viewed as a Basis of , and this Basis is called the Polynomial Basis of the finite field. Note that as an -
dimensional vector space has many different Bases. We will see later that the choice of Basis is a very
important step, and an appropriate Basis can greatly optimize or simplify some representations or operations.

TODO: Fp* multiplicative cyclic group

Binary Field
For , we call it a binary field because its elements can all be expressed as vectors of length composed of

 and . can be constructed through two types of methods: one is through an irreducible polynomial of
degree ; the other is by repeatedly using quadratic extensions, known as an Extension Tower. There are
many paths for field extension, and for , it has multiple factors of 2, so there exist multiple construction
methods between these two methods. For example, for , we can first construct , then obtain
through a quadratic extension, or we can first construct , then construct through a quartic irreducible
polynomial extension.

Let's warm up by constructing using the quadratic extension method. We discussed earlier that
 is an irreducible polynomial in . Suppose is a root of , then can be

represented as . Considering that only has four elements, they can be listed below:

And as a generator can produce the multiplicative group , which has an Order of 3:

We'll demonstrate two construction methods for . The first is to directly use a degree 4 irreducible
polynomial over . In fact, there are 3 different degree 4 irreducible polynomials, so there are 3 different
construction methods in total.

Since we only need to choose one irreducible polynomial, let's choose to define :

Let's denote the root of in as , then any element can be uniquely represented as:

To add here, is also a Primitive polynomial, and its root is also a Primitive Element of . Note that
not all irreducible polynomials are Primitive polynomials, for example, listed above is not a Primitive
polynomial.

Now we can list all the elements in , each element corresponding to a 4-bit binary vector:

For the addition of two elements in , we only need to add their binary representations bit by bit, for
example:

This operation is actually the XOR bitwise exclusive OR operation. As for multiplication, for example , it
corresponds to a shift operation on the binary:

If we continue to multiply by , a shift overflow situation will occur:

For the overflow bit, it needs to be added with , which is determined by the definition of the irreducible
polynomial , . So once the high bit overflows during shifting, an XOR operation with
needs to be performed. From this, we can see that the multiplication rules of actually depend on the
choice of the irreducible polynomial. Therefore, how to choose an appropriate irreducible polynomial is also a
key step in optimizing binary field multiplication.

Field Embedding
If we want to construct a SNARK proof system based on binary fields, we would use smaller bit counts to
represent smaller numbers, but in any case, in the challenge rounds of the protocol, the Verifier needs to give
a random number in a relatively large extension field, in hopes of achieving sufficient cryptographic security
strength. This requires us to encode witness information with polynomials in a small field, but perform
evaluation operations on these polynomials in a larger field. Therefore, we need to find a way to "embed" the
small field into the large field .

The so-called embedding refers to mapping elements from one field to another field , denoted as
. This mapping is Injective and this homomorphism mapping preserves the structure of addition

and multiplication operations:

That is, if , then also has a unique representation in . To maintain the structure of multiplication
operations, we actually only need to find a Primitive Element in K corresponding to an element in , then
this homomorphism mapping is uniquely determined, because any element in can be represented as a
power of . However, usually this embedding homomorphism mapping is not easy to find. Let's take

 as an example to see how to find the mapping of the former embedded into the latter.

Because is a Primitive Element in , we only need to consider the representation of in .

Let's first look at the Primitive Element in , is an embedding mapping?

Obviously, , so is not an embedding mapping. Thinking about how irreducible polynomials
determine the multiplication relationship between elements, and because is a root of while
is a root of , the multiplication relationship between and must be different. In , there also
exist two roots of , which are and respectively. Readers can verify the
following equation:

So, we define the embedding mapping:

This means that the binary representation corresponds to in ; and the binary
representation (which is) corresponds to in , i.e., . Note here that we can
also use as another different embedding mapping. The underlying principle is that

 and are conjugates of each other, they are perfectly symmetric, so both of these mappings
can serve as embedding mappings. Although they map to different elements, there is no significant difference
from the overall structure.

For any , when we embed into , a direct method is to find the roots of in , although
this calculation is not simple. Moreover, both embedding and de-embedding require additional calculations,
which undoubtedly increases the complexity of the system.

The recursive Extension Tower construction method mentioned in the Binius paper, by selecting appropriate
irreducible polynomials and Bases, we can obtain very direct (called Zero-cost) embedding and de-embedding
mappings.

Extension Tower
We can construct through two quadratic extensions. First, we choose a quadratic irreducible polynomial

, then we can construct , then based on we find another quadratic irreducible
polynomial to construct .

Next, we need to find a quadratic irreducible polynomial in . First note that can no longer
be used, according to the definition of , it can already be factored. Consider , it can also be factored

. In fact, all quadratic polynomials in can be factored. A quadratic irreducible
polynomial in must include a term with the new element in its coefficients.

For example, is a quadratic irreducible polynomial over . Then we can construct :

Let's denote the root of in as , then can be represented as:

Then all elements of can be represented using :

At this point, each bit in the 4-bit binary corresponds to an element in , corresponds to ,
corresponds to , corresponds to , corresponds to . Therefore, we can use the following
Basis to represent all elements in :

Now, the binary representation of directly corresponds to the "lower two bits" of the binary
representation of , for example:

Therefore, we can directly pad zeros to the higher two bits of the binary representation of to get the
corresponding element in . Conversely, by removing the two high-order zeros, an element in directly
maps back to an element in .

As shown in the figure above, is the binary representation of , its lower two bits
directly correspond to in . This kind of embedding is a "natural embedding", so the Binus paper
calls it Zero-cost Embedding.

However, is still a very small field, not enough. If we continue to perform quadratic extensions upwards,
how can we find suitable irreducible polynomials? The solution is not unique. Let's first look at a scheme given
in the Binius paper [DP23] — Wiedemann Tower [Wie88].

Wiedemann Tower
The Wiedemann Tower is a recursive extension tower based on . The bottom Base Field is denoted as ,
with elements only and :

Then we introduce an unknown , constructing a univariate polynomial ring . As discussed earlier,
 is an irreducible polynomial over , so we can use it to construct .

Next, we find a quadratic irreducible polynomial in , then we can construct :

And so on, we can construct :

Here, are the roots of the successively introduced quadratic irreducible polynomials, such
that:

And . The relationship between these introduced roots satisfies the following equation:

It's not hard to verify that . And the polynomial in the multivariate
polynomial ring has two roots and :

Moreover, and satisfy the following recursive relationship:

This is because if we multiply both sides of the equation by , we get: , which is
exactly the irreducible polynomial we use for recursive quadratic extension construction.

Multilinear Basis

For over , it forms an dimensional vector space over . We can use the roots of these
irreducible polynomials to construct a Multilinear Basis:

This is consistent with what we discussed earlier, using as the Basis for . We can quickly
verify this. First, is the Basis of , because every element of can be expressed as

After is extended to through , elements of can all be expressed as:

Substituting , , we have:

Thus, forms the Basis of . By extension, is
the Basis of . Finally, is the Basis of .

Finding Primitive element

We discussed earlier that and are conjugate roots. By Galois theory,

Then all satisfy the following property:

Here represents the Fermat Number, . A famous theorem is that ,
that is, any two different Fermat numbers are coprime, so

Therefore, if the Fermat number is prime, then obviously . Currently, we know that when
, are all prime, so

If , then according to the properties of finite fields, it is a Primitive Element of .

Additionally, through computer program verification, for the cases of , the Order of is still equal
to . The is of the size of the finite field which can already meet the needs of proof systems
like Binius. But mathematically, do all satisfy this property? This seems to still be an unsolved problem
[Wie88].

Multiplication Optimization
Another significant advantage of adopting the Extension Tower is the optimization of multiplication
operations.

The first optimization is "Small-by-large Multiplication", that is, the multiplication operation of two numbers
 and . Since can be decomposed into elements of , this multiplication operation is

equivalent to multiplication operations on .

Even for the multiplication of two elements in the same field, there are still optimization techniques. Suppose
, then according to the definition of Tower construction, they can be represented as

and respectively, then their multiplication can be derived as follows:

Note on the right side of the above equation, we only need to calculate three multiplications on , namely
, and , then the above formula can be converted to:

There's still one missing, which is a constant multiplication, because is a constant. This
constant multiplication can be reduced to a constant multiplication operation on , as shown below:

The blue part expression, is a constant multiplication operation on that needs to be calculated
recursively. The entire recursive process only needs to perform several additions to complete.

Looking back at the operation, we can also construct a Karatsuba-style recursive algorithm, where each
layer of recursion only needs to complete three multiplication operations, one less than the four multiplication
operations without optimization. Overall, the optimization effect will be very significant.

Furthermore, the multiplication inverse operation on can also be greatly optimized [FP97]. Consider
, satisfying , expand the expressions of and :

We can calculate to get the expressions for :

So, the calculation of and includes: one inversion operation, three multiplications, two additions, one
constant multiplication, and one squaring operation.

The inversion operation of can be recursively calculated layer by layer along the Extension Tower. The main
computational cost in the recursive process is three multiplication operations. There's also the squaring
operation of , which can also be calculated recursively:

For detailed recursive efficiency analysis, please refer to [FP97]. Overall, the computational complexity is
comparable to the Karatsuba algorithm, thus greatly reducing the algorithmic complexity of inversion.

Artin-Schreier Tower (Conway Tower)
There's another method to construct Binary Towers, originating from a paper published by Amil Artin and Otto
Schreier in 1927, which also appears in Conway's book "On Numbers and Games". For the historical origins
and related theories, please refer to [CHS24].

For any , we choose as the irreducible polynomial for each layer
of the Tower. And is the root of on the previous layer of the Tower. This way we can get an
Extension Tower:

Moreover, forms a Basis for the vector space . According to our
previous discussion, this set of Bases also supports Zero-cost subfield embedding. This type of Multilinear
Basis is also known as Cantor Basis [Can89].

References
[Wie88] Wiedemann, Doug. "An iterated quadratic extension of GF (2)." Fibonacci Quart 26.4 (1988): 290-
295.

[DP23] Diamond, Benjamin E., and Jim Posen. "Succinct arguments over towers of binary fields."
Cryptology ePrint Archive (2023).

[DP24] Diamond, Benjamin E., and Jim Posen. "Polylogarithmic Proofs for Multilinears over Binary
Towers." Cryptology ePrint Archive (2024).

[LN97] Lidl, Rudolf, and Harald Niederreiter. Finite fields. No. 20. Cambridge university press, 1997.

[FP97] Fan, John L., and Christof Paar. "On efficient inversion in tower fields of characteristic two."
Proceedings of IEEE International Symposium on Information Theory. IEEE, 1997.

[CHS24] Cagliero, Leandro, Allen Herman, and Fernando Szechtman. "Artin-Schreier towers of finite
fields." arXiv preprint arXiv:2405.10159 (2024).

[Can89] David G. Cantor. On arithmetical algorithms over finite fields. J. Comb. Theory Ser. A, 50(2):285–
300, March 1989.

	Notes on FRI-Binius (Part I): Binary Towers
	Extension Fields
	Binary Field
	Field Embedding
	Extension Tower
	Wiedemann Tower
	Multilinear Basis
	Finding Primitive element

	Multiplication Optimization
	Artin-Schreier Tower (Conway Tower)
	References

