
Basefold
Contents

Overview

What is Basefold?

Why Basefold?

How basefold?

Background

Interactive Oracle Proof (IOP)

Interactive Oracle Proof of Proximity (IOPP)

FRI

Polynomial Commitment Scheme (PCS)

Linear Code

Reed Solomon code (RS code)

Reed-Muller code (RM code)

Random Foldable code (RFC)

Basefold

Basefold Encoding

Encoding phase

Basefold IOPP

Commit phase

Query phase

Basefold PCS

Evaluation phase

Overview

What is Basefold?

Basefold is a new field-agnostic Polynomial Commitment Scheme (PCS) for multilinear polynomials that has verifier costs and
prover time.

Basefold PCS mainly combines two types of technique, one is FRI IOPP (Fast Reed-Solomon Interactive-Oracle Proof of Proximity), and the
other is sumcheck. It shows that FRI and sumcheck have similar interactive structures and can run in parallel and share the verifier
randomness.

Why Basefold?

The following are several advantages of Basefold compared with other SNARKs.

1. Random Foldable Code(RFCs). RFCs are a special type of Reed-Muller code. It introduces recursion and foldable into the encoding
phase, allowing for the flexible handling of messages of varying sizes. Unlike the RS codes, RFCs are foldable and have
encoding time over any sufficiently large field. The foldable attribute is the key to achieving the field-agnosticism.

2. Field-Agnosticism. Basefold PCS could work over any sufficiently large finite field. It is a major boon to SNARK. For example, suppose an
application is confined to the finite field but the SNARK is defined over a finite field . In this case, the “modulo p” operation is
explicitly encoded into the circuit and needs to be invoked for each multiplication gate. A field-agnostic PCS can deal with any large finite
field, making it ideal as it enables the SNARK to avoid some large overhead associated with compatibility.

3. Efficiency. Basefold IOPP can be used for any linear code and Basefold PCS is very efficient. It is 2-3 times faster than prior multilinear
PCS constructions from FRI (like ZeromorphFri.) when defined over the same finite field.

How Basefold?

There is a brief introduction of the overall Basefold that contains four phases:

Encoding phase. The prover encodes its message using random foldable code and gets the codeword .

Commit phase. The prover commits the codeword by Merkle commitment and generates the Merkle root as the commitment of .
The further process is similar to FRI which has many rounds, each round generates a new vector and a commitment of . Finally,
The prover sends all the commitments as oracles to the verifier.

Query phase. The verifier queries a few points to check the consistency of these commitments .

Evaluate phase. The verifier runs Basefold IOPP and sumcheck in parallel to check the commitment and the
evaluation .

Background

Interactive Oracle Proof (IOP)

IOP is a cryptographic protocol that allows a prover to convince a verifier about the correctness of a statement without revealing the
underlying data.

A -round public coin IOP runs as follows:

Initially, the prover sends an oracle string to the verifier. Then, in each round , the verifier sends a random challenge to
the prover, and the prover replies with a new oracle string . After rounds of communications, the verifier queries some entries of
those oracle strings and outputs a bit that indicates if the verifier has been convincing.

Interactive Oracle Proof of Proximity (IOPP)

An IOPP is a special proof system for proofing that a committed vector over a field is close to a codeword in some linear error-correcting
code.

FRI

FRI stands for Fast Reed-Solomon Interactive oracle proof of proximity. It allows us to prove that the evaluations of a given polynomial , over
a domain , correspond to the evaluations of a low-degree polynomial.

The main idea of FRI is a low-degree test and it executes by “split and fold”. It first splits the original polynomial into even and odd parts, and
using a random folds the two parts. Then the folded polynomial is the half degree of the original polynomial.

Let us see an example of “split and fold”.

let

then split into even part and odd part .

We can see that:

Then, we using a random fold and get a new polynomial .

We can see that the degree of the new polynomial is half the degree of .

The split and fold process can be recursively executed until the final folded polynomial which is a constant polynomial.

Polynomial Commitment Scheme (PCS)

A polynomial commitment scheme (PCS) is a cryptographic primitive that allows a prover to commit to a polynomial of degree
using a short commitment and later, the prover proves the committed polynomial satisfying . It is a building block for many
cryptographic applications.

A PCS consists of a tuple of algorithms (Setup, Commit, Open, Eval).

Setup takes security parameters and other information of witness as input and outputs public parameters.

Commit takes a polynomial as input and outputs a commitment .

Open takes a commitment and a polynomial as input and outputs a bit . (indicates whether).

Eval takes a commitment , an evaluation point , a value and a polynomial (only the prover knows) as input. Then, the prover wants
to convince the verifier that is an opening to and . The verifier outputs a bit indicating whether it has been convinced.

Linear Code
In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword.

Reed-Solomon Code (RS code)

Reed-Solomon is a type of error-correcting code that transforms a message of size into a codeword of size . The code rate is defined as
.

The encoding process is associated with a generator matrix, such that encoding of a vector is .

The encoding process uses the following equation：

Let’s see an example:

Suppose we want to encode a message of size 4: , and the generator matrix of size :

Then, we compute to get the codeword: .

Reed-Muller Code (RM code)

Reed-Muller code also is a type of error-correcting code used in coding theory. Here we introduce a special type of RM code named foldable
RM code whose generator matrices have a foldable structure. A foldable RM code includes generator matrices() and diagonal
matrices(), (). The foldable structure means that the generator matrix can be
generated from the previous generator matrix and two diagonal matrices and , satisfying the following formula:

Error: Missing open brace for superscript

Note that the elements on those diagonal matrices are distinct from each other.

Random Foldable code (RFC)

The RFC, a variant of the foldable RM code, follows a recursive approach to generate its generator matrix. RFC is foldable and has
encoding time over any sufficiently large field, better than the traditional encoding method with encoding time.

RFC introduces two modifications on diagonal matrices:

1. It assigns as a diagonal matrix with entries drawn uniformly at random from (denotes \ {0}).

2. It sets as .

The generator matrices are created as follows:

The following graph shows an example of the process of creating generator matrices recursively.

Basefold

Basefold Encoding

Encoding phase

Basefold encoding algorithm takes the original message as input and outputs codeword . denotes the logarithm of ’s
length. If , then . There are initial generator matrix and diagonal matrices as public
parameters.

Basefold uses a recursive way to encode messages rather than directly compute . It split the message = ,
represents the first half of , and represents the second half of . Then, it encodes and , respectively.

In the encoding phase, there are two message statuses in the algorithm:

1. The message is the smallest unit of encoding, the algorithm will return the encoding result .

2. The message is not the smallest unit, then further split into . Then the algorithm can reduce the into
 and such that:

, where represents a vector whose elements are diagonal elements of . For example, let , then

.

Let’s see an example of encode a message .

Given the public parameters , , . Therefore, , .

Our goal is encode and get .

At first, is not the smallest encoding unit. Therefore, we split into and
.

Let , . We get :

At this point, we can recursively compute and . We further split into , and split into
, .

Due to all , , , are the smallest units. We then encode the them and get .

And then we can compute using .

Finally, we compute .

At this point, we have obtained the codeword . The result of using the recursive encoding method is the
same as the result of directly calculating .

In this case, the message of size 4 and the codeword of size 8, thus the code rate equal to .

Basefold IOPP

Basefold IOPP generalized the FRI IOPP to any foldable linear code. The Goal of Basefold IOPP is to ensure the verifier checks an oracle
sent by the prover is close to a codeword .

Basefold IOPP consists of two phases: Commit phase and Query phase.

Commit phase: **the prover commits a polynomial and generates a list of oracles given the verifier’s folding challenge
.

Query phase: the verifier samples a query index to check the consistency between oracles.

Commit phase

Basefold IOPP uses Merkle commitment to generate commitments. The graph below illustrates the process of deriving oracle from
. The Merkle root is exactly the commitment of .

Continuing from the previous example, let’s demonstrate how the prover generates a list of oracles given the verifier’s folding
challenges . The prover first computes the Merkle root of and gets the commitment . Next, upon receiving the folding
challenge , the prover can fold the vector into , which is half the size of . Then commit to get . And using another folding
challenge fold to get which is half the size of . Then commit to get .

The prover sends all the oracles to the verifier.

Note that given an input oracle that is a commitment of an encoding of a polynomial , the last oracle sent by the honest prover in the
IOPP protocol is exactly an encoding of a random evaluation . Therefore, this ultimate oracle must be a valid codeword.

Query phase

In this phase, the verifier samples a query index to check the consistency between oracles. The figure below shows the query
phase. The verifier can query oracles several times. The larger the number of queries made, the higher security level of this model.

Let's focus on a single query to see more details. The verifier selects an index 0, and each oracle returns the value at that position and the
value at the corresponding position after halving the vector. In this case, oracles return () . Then, the verifier checks if is
accurately computed from , and the folding challenge , and checks if is correctly computed from , and the folding challenge
. The verifier also checks is a valid codeword.

After several rounds, the prover passed all queries from the verifier. Finally, the verifier will believe the prover is truly commitment of the
polynomial .

Basefold PCS

Basefold PCS interleaves Basefold IOPP and sumcheck. The Goal of Basefold PCS is the prover wants to convince the verifier that it knows an
opening of a private polynomial that , with the polynomial’s commitment being .

Therefore, Basefold PCS consists of two parts to prove:

1. .

2. .

The first statement can be proved by Basefold IOPP, while the second statement can be proved by using sumcheck. Let’s see the further
details:

It is known that by using the classic sum-check protocol with a multilinear extension, we can transform the evaluation check of a multilinear
polynomial at a point into an evaluation check of **at a random point . In the sumcheck protocol, the
prover and the verifier interactive rounds. In each round, a variate is fixed using the verifier’s challenge, consequently reducing the
dimensionality by 1 of .

As the earlier discussion on Basefold IOPP, shows that Basefold IOPP also involves interactive rounds between the prover and the verifier. In
each round, the codeword is halved in size.

It can be seen that Basefold IOPP and sumcheck have a similar structure. Therefore, in the evaluation phase, the prover and verifier can
simultaneously execute a Basefold IOPP protocol and a sumcheck protocol, using the identical set of random challenges . At
the end of the Basefold PCS, the verifier checks that the claimed evaluation in the last round of the sumcheck protocol is consistent with the
last prover message of the IOPP protocol.

Basefold Evaluation phase

Given a commitment , a point and value , the prover wants to convince the verifier that it knows an opening of
such that . Basefold PCS interleaves sumcheck with Basefold IOPP, operating as depicted in the the following figure, which
illustrates the interactive process between the prover and the verifier.

As from the figure, Basefold PCS executes Basefold IOPP and sumcheck in parallel. The blue part represents the sumcheck interactive
process while the yellow part indicates the Basefold IOPP interactive process. The red part denotes the random challenge from the
verifier.

Let’s see an example, suppose the prover holds a polynomial whose coefficients are . First, the prover using Basefold
encoding algorithm to encode into a codeword , and commit to produce the commitment .

The prover wants to prove :

1.

2.

For prove 1, we utilize the Basefold IOPP. In the commit phase, the prover generates oracles given the verifier’s challenge
and sents oracles to the verifier. Then, in the query phase, the verifier queries some points, if the prover can pass all the verifier’s checks and

 is a valid codeword, the verifier will accept it.

Regard to prove 2, we re-express the polynomial by the multilinear extension, can be expressed as the sum:
. Thus, checking is equivalent to checking the sumcheck claim

. Then, we can utilize the sumcheck protocol to prove it.

The Basefold PCS runs as the following graph:

We can see that Basefold IOPP and sumcheck share all the verifier’s challenges . If the prover passes all the verifier’s checks, then it
convinces the verifier.

	Basefold
	Contents
	Overview
	What is Basefold?
	Why Basefold?
	How Basefold?

	Background
	Interactive Oracle Proof (IOP)
	Interactive Oracle Proof of Proximity (IOPP)
	FRI
	Polynomial Commitment Scheme (PCS)

	Linear Code
	Reed-Solomon Code (RS code)
	Reed-Muller Code (RM code)
	Random Foldable code (RFC)

	Basefold
	Basefold Encoding
	Basefold IOPP
	Basefold PCS

