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In the previous article "Overview of Basefold's Soundness Proof under List Decoding", we outlined the approach to the
soundness proof in the [H24] paper. This article will delve deeper into the proof details following this approach, focusing
mainly on the proof of [H24, Lemma 1], which demonstrates the soundness error of the Basefold protocol in the commit
phase.

Lemma 1 [H24, Lemma 1] (Soundness commit phase). Take a proximity parameter , with .
Suppose that a (possibly computationally unbounded) algorithm  succeeds the commitment phase with  rounds
with probability larger than

 

where  is the soundness error from Theorem 3, and

 

with  being the soundness error from Theorem 4, where . Then  belongs to .

[H24, Theorem 3] mentioned in the lemma is the correlated agreement theorem for subcodes under list decoding, while
[H24, Theorem 4] is the weighted version of [H24, Theorem 3].

The relation  implies that  has not cheated, indicating that the committed polynomials  are both within
distance  from the corresponding encoding space and consistent with the committed values  at the query point

, i.e.,

 

Lemma 1 states that if 's success probability in the commit phase exceeds , we can trust that  has not cheated, and
the claimed relation  holds.

Here, we need to mathematically define what it means for  to succeed in the  round of the commit phase. This
is the concept of -good given in the [H24] paper. From the protocol itself, 's success means that the verifier receives

 from , then performs checks: one is the sumcheck, and the other is randomly
selecting  in  to verify that the FRI folding is correct. First, the parameter , i.e.,

 

Let  represent the polynomial space corresponding to the Reed-Solomon code , where  is the result
of applying the mapping  to   times, i.e., . Therefore, the polynomial subspace corresponding
to  is defined as

 

1. The sumcheck is correct. This means there exists , with corresponding multivariate polynomial 
satisfying

 

Based on the relationship between  and , we can deduce that  needs to satisfy
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2. The folding is correct. It needs to satisfy

 

Here, only when the proportion of  in  satisfying the folding check is greater than , after mapping through , will
the verifier pass in the end.

When conditions 1 and 2 are met, we say that such  is -good for .

Proof of Lemma 1  
The proof of Lemma 1 uses mathematical induction. First, it proves that the conclusion holds when , using [H24,
Theorem 3]. Then, assuming Lemma 1 holds for , it proves that the conclusion also holds for . This process
uses the weighted [H24, Theorem 4], following a similar approach to the one introduced in the previous article. For example,
in the  round, starting with the conditions satisfied by  obtained after folding with the random number , which
is close to the corresponding encoding space and satisfies the sumcheck constraint, we first deduce that the corresponding

 satisfies some conditions. This allows us to use the correlated agreement theorem for subcodes. Applying the
theorem's conclusion, we can then derive the properties satisfied by  and  before folding, and from this, deduce the
properties satisfied by . At this point, applying the induction hypothesis, we can obtain that the conditions of the lemma
are satisfied in the -th round, thus proving that the conclusion holds in the -th round, which in turn proves that the lemma
holds in the -th round.

Proof: First, prove that the lemma holds when . The given condition is that 's success probability in the commit
phase is greater than , and we want to prove that . According to the condition and the
definition of -good, we can deduce that with a probability greater than , the  provided by  is -good for 
. Then, considering the polynomials  before folding, the probability that they are within distance  from the
corresponding subcode  (which means the consistent part is greater than ) is

 

The purpose of considering polynomials  instead of  is to allow our analysis to enter the scope of the linear
subcode , so we can use [H24, Theorem 3] to obtain polynomials

 

and a set , satisfying

1. 

2. 

Now that we have found polynomials , for polynomials

 

they satisfy

 

The multilinear polynomial  corresponding to  also satisfies , therefore
.

Now assume the lemma holds for , and we want to prove that it still holds for . According to the conditions
of the lemma, in the -th round, 's success probability in the commit phase exceeds .
Let  be the set composed of . Therefore, under the condition

 



's success probability is greater than , i.e.,

 

From the definition of -good, we can deduce that for  satisfying -good, there exists a polynomial 
satisfying the sumcheck constraint, such that

 

Here,  is a sub-probability measure with density function defined as, for 

 

Here's an explanation of what equation (3) essentially represents: it's equivalent to equation (2) in the definition of -good.
According to the definition of the  function, equation (3) is equivalent to

 

First, let's form a set  consisting of  in  that satisfy the folding relation, then calculate this set using the 
function.

 

Therefore

 

The numerator  in the above equation represents the number of points in  that satisfy the -th

folding correctly, and also pass the folding checks for . Equation (3) becomes

 

This is completely consistent with equation (2) in the definition of -good. Next, following the soundness proof approach
introduced in the previous article, since the multilinear polynomial  corresponding to  satisfies the sumcheck
constraint, it satisfies

 

This leads to



 

For the choice of , there is a  probability that , making the above equation hold. Therefore,
with a probability exceeding

 

polynomials , and ,  satisfy

 

The above satisfied condition can be written as

 

This also satisfies the conditions of the weighted correlated agreement theorem [H24, Theorem 4], so we can obtain
polynomials , and a set  satisfying:

1. 

2. , 

Now that we have found polynomials , there exist polynomials

 

and

 

According to conclusion 2 given by correlated agreement, we can get

 

For the multilinear polynomials  and  corresponding to , according to the definition of , we can
get

 

Obtain  by inverse mapping the points in set  through . At these points,  must be consistent
with

 

For the multilinear polynomial  corresponding to , it satisfies

 

From this, we can conclude that the sumcheck in the -th round is satisfied:

 

Now that we have obtained that the sumcheck in the -th round is satisfied, we need to consider whether the folding relation
is satisfied. Consider , we have



 

We have already obtained  through the correlated agreement theorem, so the proportion of  in  that can
satisfy the folding check exceeds . Combining the sumcheck constraint and folding relation in the -th round, we get that

 is -good for . Since the probability of generating such a trace set is

 

it satisfies the conditions of the lemma. By the induction hypothesis, the lemma holds in the -th round, so we can conclude
that . This proves that the lemma also holds in the -th round. Thus, the lemma is proved.
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