
Note on Basefold's Soundness Proof under List
Decoding

Jade Xie jade@secbit.io

Yu Guo yu.guo@secbit.io

This article mainly outlines the security proof for the Basefold [ZCF23] multilinear PCS under list decoding, as
presented in Ulrich Haböck's paper [H24]. In [ZCF23], the soundness proof was given under unique decoding for
foldable linear codes, while in [H24], the proof is for Reed-Solomon codes under list decoding, raising the bound to the
Johnson bound, i.e., . To prove security, the paper presents two correlated agreement theorems stronger than
the one given in [BCIKS20]:

1. [H24, Theorem 3] Correlated agreement for subcodes.

2. [H24, Theorem 4] Weighted correlated agreement for subcodes.

When considering the Basefold protocol applied to Reed-Solomon codes, the protocol combines FRI and sumcheck. To
prove its security, [H24] proposes subcodes that incorporate sumcheck-like constraints on top of Reed-Solomon
codes. By combining this with the corresponding correlated agreement theorems, the security of the protocol can be
proven.

Basefold Protocol
For a multilinear polynomial , we want to prove that for any query

 from , we have . To implement PCS for the multilinear polynomial
, the Basefold protocol combines the Sumcheck and FRI protocols. The following introduction is

based on the description in [H24].

Combining with Sumcheck Protocol

To prove , we first convert the query value into a Sumcheck sum form:

where , and is actually the function:

Therefore, the proof of is transformed into proving the sum over :

The Sumcheck protocol can then be used to prove this sum is correct.

For , the Prover needs to construct a univariate polynomial based on the challenge random numbers
:

This corresponds to the polynomial .

mailto:jade@secbit.io
mailto:yu.guo@secbit.io

We can see that in , is linear in , and is also linear in . Their
product becomes quadratic in . To correspond with the correlated agreement theorem for linear subcodes later, we
extract the linear term in . The Prover needs to send the linear polynomial:

Since

Therefore,

The Prover only needs to provide , and the Verifier can calculate using the above equation.

In the Sumcheck protocol, the Prover first sends a univariate polynomial
 and . Then in round :

1. The Verifier can calculate based on and check if . Then choose a
random number and send it to the Prover.

2. The Prover calculates based on , computes and sends it to the Verifier.
Both the Prover and Verifier set .

In the last step of Sumcheck, we need to obtain the value of at a random point , i.e.,

This value can be obtained by folding a univariate polynomial of degree not exceeding corresponding
to the multilinear polynomial using the same random numbers in the FRI protocol.
After folding times, we will get a constant , and we want its value to be .

Combining with FRI Protocol

For the multilinear polynomial , there is a univariate polynomial (called univariate
representation in [H24]) corresponding to it:

where is the binary representation of , with being the least significant bit and being the most
significant bit.

For example, when , suppose the multilinear polynomial is:

Then the univariate polynomial corresponding to is:

Here, corresponds to the even terms of , while corresponds to the odd terms. We can see
that the coefficients in the even terms correspond to in the
multilinear polynomial, while the coefficients in the odd terms correspond to . In other words, is the
univariate representation of , and is the univariate representation of , because:

Using to fold and , we get:

And is precisely the univariate representation of . Note that the folding method here is not the
common one in the FRI protocol:

This is because in this case, the resulting does not correspond to . This is tied to the
correspondence relationship between univariate polynomials and multilinear polynomials. Under this folding method,
their correspondence relationship should change to (the WHIR paper [ACFY24] adopts this correspondence method):

We won't elaborate here on how can correspond to under this correspondence
relationship.

Returning to the correspondence relationship between univariate polynomials and multilinear polynomials given in
[H24], let's now derive that obtained by folding with and indeed corresponds to

. For general , we have:

Therefore,

Thus, we have:

This also shows that is the univariate representation of . Then, by folding in this way
using random numbers , we finally get a constant polynomial whose value corresponds exactly to

. To summarize, the Basefold protocol performs the Sumcheck protocol on the multilinear polynomial
using random numbers on one hand, and the FRI protocol on the corresponding univariate polynomial using the
same random numbers on the other hand, thus achieving PCS for multilinear polynomials. This corresponds to [H24,
Protocol 1], which is the Basefold protocol for Reed-Solomon codes. The overall protocol idea is as such, so we won't
repeat the specific protocol process here. See [H24, Protocol 1] for details.

 typo In [H24, Protocol 1], during the Query phase, the paper states that the folding relationship to be
checked is:

However, based on the folding relationship given earlier, I believe it should be changed to:

The soundness proof in [H24] is for a more general protocol, namely the batch version of the Basefold protocol.

Protocol 2 [H24, Protocol 2] (Batch Reed-Solomon code Basefold). The prover shares the Reed-Solomon
codewords of the multilinears

 , together with their evaluation claims at with the verifier. Then they engage in
the following extension of Protocol 1:

1. In a preceding round , the verifier sends a random , and the prover answers with the oracle
for

Then both prover and verifier engage in Protocol 1 on and the claim . In addition to the
checks in Protocol 1, the verifier also checks that equation holds at every sample from .

The batch version of the Basefold protocol essentially uses a random number to linearly combine
through its powers, transforming them into a function , and then applies Protocol 1 to it.

Soundness Overview
This section mainly analyzes the proof approach for the soundness error of Protocol 2. First, let's explain the meaning
of soundness error. For any potentially malicious Prover , if there exists a among the provided that
is more than distant from the Reed-Solomon encoding space ([H24] studies the proof under list decoding, so it

considers the parameter), or if the multilinear representation corresponding to does not

satisfy the evaluation claim , under this condition, the probability that passes the Verifier's checks
does not exceed . This probability is called the soundness error. In other words, the soundness error analyzes the
probability that a malicious Prover can luckily pass the Verifier's checks. might luckily pass the checks at places
where randomness is introduced. Analyzing the protocol, we find three such places:

1. Commit phase

1. Using the random number to batch , let this probability be .

2. Using random numbers for the sumcheck protocol and FRI-like folding process, let this
probability be .

2. Query phase

1. The Verifier randomly selects to check if the folding is correct, let this probability be

Therefore, the soundness error of the entire protocol is:

Commit Phase

Now let's consider the case of folding into using , i.e.,

Assume the given parameter . Since is a random number selected from , the following situation might
occur:

. .+

In the figure, are the closest codewords in the corresponding Reed-Solomon encoding space to
 respectively. The same green color indicates that they have the same value at that point, while

different colors indicate different values at that point. We can see that for the provided by the malicious Prover, its
distance from the Reed-Solomon space is greater than , but after folding with , the resulting might
end up less than distant from the Reed-Solomon space . This way, would pass the Verifier's folding verification
in the subsequent protocol, and would successfully deceive the Verifier.

So what's the probability of this situation occurring? It's given by the Correlated Agreement theorem from [BCIKS20].
This theorem states that if

where is an expression related to , which can also be written as , and its form differs
under unique decoding and list decoding (this part will be explained in detail in the next section). In other words, if we
take all possible in to get , and the proportion of those not exceeding in distance from is greater than ,
then there must exist a subset and codewords in such that:

1. ,

2. and .

. .+

Now we can see that not only are and close to the encoding space , but they also share the same set
where they match the corresponding codewords. This is a good conclusion that can help us derive the distance of the
original to .

Through the mapping , points in can be mapped to . Now we can use to map the points in
 back to . For example, let and

Then through the mapping , we can get

Suppose , then we can get

As shown in the following figure:

Now, according to the correlated agreement theorem, we have and . Therefore, we
can obtain the polynomial before folding based on and :

We can conclude that and have consistent values on , thus obtaining the distance of to
the encoding space :

. .+

This also indicates that the Prover did not cheat, and the function is not more than distant from the
corresponding encoding space. Returning to the initial question, we wanted to analyze the probability of a cheating
Prover successfully deceiving the Verifier. Now the correlated agreement theorem tells us that except for a probability
, we can ensure the Prover did not cheat, which also means that if the Prover cheats, the probability of successfully

deceiving the Verifier will not exceed this probability .

Have we finished analyzing the soundness error of the Commit phase? Reviewing the above analysis, we used the
correlated agreement theorem to obtain the probability that the folded polynomial could deceive the Verifier due to
the introduction of the folding random number . However, one thing to remember is that the Basefold protocol not
only checks if the FRI-like folding is correct but also simultaneously checks the sumcheck constraint. Therefore, the
above analysis is not sufficient. Following the idea of the correlated agreement theorem, we add the sumcheck
constraint on top of it. If there exists a polynomial corresponding to that satisfies the
sumcheck constraint, we want to obtain and corresponding to

 and that also satisfy the sumcheck constraint. This way, we can infer whether the sumcheck
constraint is satisfied before folding.

. .+

sumcheck

Now consider the sumcheck constraint. We know:

We want to obtain:

If equations and hold, since , we can conclude that the multilinear polynomial
corresponding to obtained from and satisfies the sumcheck constraint.

Following the approach in Section 3.2 of [H24], we derive that equations and hold. Based on the relationship
between and , we get:

And:

Therefore:

Since is a linear polynomial, has only one zero point in . When
takes this point, we have , and the above equation naturally holds. The probability of this happening is

. If , then:

[H24] gives:

Here's a detailed derivation: Since , we have:

So the above equation becomes:

Let a function be , its evaluation at point is
, and can be expressed as:

Therefore:

By linearity, we know:

At the same time:

Subtracting from , we get:

Let the new polynomial be:

Following the idea of the correlated agreement theorem, according to the condition, if:

That is, if is not more than distant from with a probability greater than a bound , then subtracting a number
 from both of them does not affect the distance between them. Therefore, is not more than distant from

.

Which encoding space does belong to? We know that , and is
essentially a number, so is still in the space. At the same time, we have already derived:

This indicates that the multilinear polynomial corresponding to also satisfies such an inner product constraint.
Therefore, we can say that is in a subspace of , namely:

In the above equation, is the multilinear polynomial corresponding to . Such a polynomial subspace can form
a linear subcode of the encoding space . We can see that by extracting the linear term from and
adding a sumcheck-like constraint, we find that the encoding space to be considered is a linear subspace of the
original encoding space.

Now let's summarize the conclusions we've reached so far. Let , , we have:

At the same time, is not more than distant from with a probability greater than , and
, i.e.,

[H24, Theorem 3] gives the correlated agreement theorem for linear subcodes, whose strict description will be
introduced in the next section. The conclusion of this theorem states that there exist polynomials and from

, and , satisfying:

1. ,

2. and .

Here, includes the sumcheck constraint. According to the definitions of and , we can get:

Since and essentially represent numbers, according to conclusion 2, we have:

Let:

Therefore, and are consistent with and on respectively. From and
, we can obtain their corresponding multivariate polynomials . Since

, their corresponding multilinear polynomials satisfy:

Therefore:

Multiplying both sides by respectively, and using , we get:

This also shows that equations and hold, which implies that corresponding to satisfies the
sumcheck constraint.

In summary, the soundness error in the commit phase can be analyzed following the above approach. The specific
probability is given by the correlated agreement theorem. [H24, Theorem 1] gives the soundness error in the commit
phase as:

1. Batching phase: .

2. Sumcheck and FRI-like folding phase: , where is the additional

probability introduced when simplifying the sumcheck constraint to make .

The above is given by the weighted correlated agreement theorem [H24, Theorem 4].

Query Phase

For a malicious Prover , now excluding the case where it can luckily pass the Verifier's check in the Commit phase,
after one folding, will be far from , or the sumcheck constraint will be incorrect.

sumcheck

query fold

check

For , since the Verifier will randomly select an from to check if the folding is correct, if it queries
those points where and are consistent on , it will pass the check. This proportion does not exceed . If
the query is repeated times, then the probability of luckily passing the check does not exceed .

For the case where the sumcheck constraint is incorrect, the verifier will use the sumcheck protocol to check if the
constraint is correct. Here, cannot successfully cheat and will definitely be caught.

In summary, the soundness error in the query phase is .

Therefore, we obtain the soundness error of the entire protocol given by [H24, Theorem 1]:

 typo I believe the condition given in [H24, Theorem 1] is incorrect. Based on the
condition given in [H24, Theorem 4] later, it should be changed to .

Correlated Agreement Theorems
This section introduces the correlated agreement theorem given by [BCIKS20], as well as the correlated agreement
theorem for subcodes given by [H24] based on this.

First is the correlated agreement theorem given by [BCIKS20], which includes two theorems: one for the unique
decoding bound and one for reaching the Johnson bound under list decoding. Some symbols have been changed. Let

 denote a finite field, denote a Reed-Solomon code over , with evaluation domain and rate
.

Theorem 3 [BCIKS20, Theorem 6.1] Suppose . Let be functions from to . If

where

then for any , we have

Moreover, there exist such that for all ,

In fact,

Theorem 4 [BCIKS20, Theorem 6.2] Let be functions from to . Let , define
, and let . If

where

then are simultaneously -close to , i.e., there exist such that

Theorem 3 and Theorem 4 give the correlated agreement theorems under unique decoding and list decoding,
respectively. Although their formulations are somewhat different from those given in the previous section, they
express the same meaning. Here, the specific expressions for are given.

In [H24], by analyzing the Guruswami-Sudan list decoder in the proof of the correlated agreement theorem in
[BCIKS20], a correlated agreement theorem for subcodes under list decoding is obtained.

Theorem 5 [H24, Theorem 3] (Correlated Agreement for Subcodes) Let be a finite field of arbitrary characteristic,
 be a Reed-Solomon code over with evaluation domain and rate . Let be a linear

subcode of , generated by a subspace of polynomials from . Given a proximity parameter
, where , and satisfying

where

then there exist polynomials , and a set , satisfying

1.

2. are consistent with respectively on .

Comparing Theorem 5 and Theorem 4, in terms of the expression of , their forms can be said to be consistent. The
difference is that Theorem 5 is considered in a linear subcode of the Reed-Solomon encoding space. It's natural to
conjecture that for unique decoding, there is also a similar result to Theorem 4 for subcodes.

Conjecture 6 Let be a finite field of arbitrary characteristic, be a Reed-Solomon code over with
evaluation domain and rate . Let be a linear subcode of , generated by a subspace of polynomials
from . Let , and satisfying

where

then there exist polynomials , and a set , satisfying

1.

2. are consistent with respectively on .

Similar to the soundness proof of the batch FRI protocol in [BCIKS20], which used a weighted version of the correlated
agreement theorem, [H24] also gives a weighted correlated agreement theorem for the batch Basefold protocol.
According to the description in [H24], let's first explain the meaning of "weighted". Given a sub-probability measure
on and , we write

to mean that there exists a polynomial in such that . This means using
the measure to calculate the set of in that satisfy . For completeness, here's the weighted
correlated agreement theorem for list decoding given in [H24].

Theorem 7 [H24, Theorem 4] (Weighted Correlated Agreement for Subcodes) Let be a linear subcode of
, and choose , for some integer , where . Assume a density

function with common denominator , i.e. for all in ,

for an integer value , and let be the sub-probability measure with density , defined by
. If for ,

where

then there exist polynomials belonging to the subcode , and a set with
 on which coincide with , respectively.

The advantage of the weighted correlated agreement theorem is that in the process of proving the protocol's
soundness, can be defined by oneself, increasing flexibility. The details of the soundness proof for the Basefold
protocol will be introduced in the next article.

References
[H24] Ulrich Haböck. "Basefold in the List Decoding Regime." Cryptology ePrint Archive(2024).

[ZCF23] Hadas Zeilberger, Binyi Chen, and Ben Fisch. "BaseFold: efficient field-agnostic polynomial commitment
schemes from foldable codes." Annual International Cryptology Conference. Cham: Springer Nature Switzerland,
2024.

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for
Reed–Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science, pages
900–909, 2020.

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. "WHIR: Reed–Solomon Proximity
Testing with Super-Fast Verification."Cryptology ePrint Archive(2024).

	Note on Basefold's Soundness Proof under List Decoding
	Basefold Protocol
	Combining with Sumcheck Protocol
	Combining with FRI Protocol

	Soundness Overview
	Commit Phase
	Query Phase

	Correlated Agreement Theorems
	References

