
Notes on Basefold (Part V): IOPP Soundness
Jade Xie jade@secbit.io

Yu Guo yu.guo@secbit.io

In this article, we will outline the proof approach for IOPP soundness presented in the [ZCF23] paper, which
is similar to the soundness proof for the FRI protocol in [BKS18]. It employs a binary tree method to analyze
points where the Prover might cheat, a concept also appearing in the soundness proof of the DEEP-FRI
protocol in [BGKS20].

IOPP Protocol
The IOPP protocol has been thoroughly introduced in the second article above. For the analysis in the later
sections, we will briefly outline the IOPP protocol here. It is an extension of the FRI protocol, and the process
of understanding the protocol can fully leverage the understanding of the FRI protocol, as both the commit
and query phases are consistent.

Protocol 1 [ZCF23, Protocol 2] IOPP.commit

Input oracle:
Output oracles:

For from down to :

1. Verifier samples and sends from to Prover

2. For each index , Prover: a. Sets
 b. Sets

3. Prover outputs oracle .

Protocol 2 [ZCF23, Protocol 3] IOPP.query

Input oracles:
Output: accept or reject

Verifier samples

For from down to , Verifier:

1. Queries oracle

2. Computes

3. Checks

4. If and , then updates

If is a valid codeword with respect to the generator matrix , output accept ; otherwise, output
reject .

Analysis Approach

mailto:jade@secbit.io
mailto:yu.guo@secbit.io

The analysis of IOPP soundness examines, for any Prover who might cheat, what is the maximum
probability that the Verifier outputs accept in such a scenario. We aim for this probability to be sufficiently
small to ensure the protocol's security. Naturally, this probability depends on certain parameters of the
protocol, and in practice, we desire it to be below a predetermined security parameter (for example,
could be set to or), meaning that this probability should be less than .

Let us now examine areas within the IOPP protocol where a cheating Prover might exploit to cause the
Verifier to output accept . We note that there are two points where the Verifier introduces randomness:

1. In the IOPP.commit phase, step 1 of the protocol, the Verifier selects a random number from and
sends it to the Prover, who uses it to fold the original to obtain .

2. In the IOPP.query phase, step 1 of the protocol, the Verifier samples and then checks
whether the Prover's folding was correct.

Suppose the initial cheating Prover provides a that is away from . We aim for the Verifier to
ultimately check that is also at least away from , meaning that the distance is preserved
throughout the folding process. Another scenario is detecting that the Prover did not fold correctly. We
consider two cases:

1. The Prover is extremely lucky, and the random number chosen by the Verifier causes the folded
to be less than away from the corresponding , leading the Verifier to output accept . We consider
this situation very lucky for the Prover because, according to the Proximity Gaps theorem, the
probability of such an event is exceedingly small (assuming this probability is), such that its
occurrence is akin to the Prover winning the lottery.

2. The Prover is not as lucky as in Case 1. In this scenario, after folding with the random number, the
message still remains at least away from the corresponding . Since the Verifier randomly selects

 in the IOPP.query phase and only checks a subset of the Prover's foldings, this
provides an opportunity for the Prover to potentially evade Verifier checks. For example, if after
folding, the message satisfies in relative Hamming distance, i.e., . The
Verifier will randomly check against , and if they are unequal, the Verifier will reject.

a[0] a[1] a[2] ... a[n-1]

c[0] c[1] c[2] ... c[n-1]

a

c

=? =? =? =? =?

Since , more than a proportion of the components in differ from the codewords in the
encoding space. When the Verifier selects one of these differing positions, it will reject, hence the
probability that the Verifier catches the Prover cheating exceeds .

a

c

=

If the Verifier queries times, the probability that the Prover can pass all Verifier checks is at most
.

Combining the two cases, the probability that the cheating Prover succeeds is bounded above by

This represents an overall analysis approach. The specific expression may vary, but the following IOPP
soundness theorem will elaborate further.

IOPP Soundness Theorem
Theorem 1 [ZCF23, Theorem 3] (IOPP Soundness for Foldable Linear Codes) Let be a foldable
linear code with generator matrices . Let () denote the code generated by ,
and assume that for all , the relative minimum distance . Let , and set

, where is the relative coset minimum distance between
 and . Then, for any (adaptively chosen) Prover oracles , the Verifier in the IOPP.query

phase repeated times outputs accept with probability at most .

The term mentioned in the theorem refers to the composition of two Johnson functions,
defined as follows.

Definition 1 [ZCF23, Definition 4] (Johnson Bound) For any , define as

The definition of relative coset minimum distance is as follows.

Definition 2 [ZCF23, Definition 5] (Relative Coset Minimum Distance) Let be an even number, and let
be a error-correcting code. For a vector and a codeword , the relative distance

 between and is defined as

This definition is similar to the block-wise distance definition used in [BBHR18] to prove soundness
([BBHR18, Definition 3.2]). It is an alternative version of the relative minimum Hamming distance. Pairs

 are considered as a pair, corresponding to a coset, analogous to the FRI protocol. For
example, for , let the generator be with , and select the mapping , then it can be
seen that , , , correspond to elements that form a coset, resulting in a total of 4
cosets.

1 2 3 4 5 6 7 8 n=8

x

x^2

 measures the proportion of cosets in which and are not entirely consistent.

v[n]

c[n]

=?

n/2

v[n/2]

c[n/2]

=?

v[1+n/2]

c[1+n/2]

=?

1

v[1]

c[1]

=? ...

Let . Then, it relates to the relative minimum Hamming distance as follows:
.

Despite introducing these different definitions and Johnson functions, the proof approach for IOPP
soundness remains consistent with the earlier outlined analysis, discussing two cases. Our aim is to analyze
the probability that a cheating Prover can pass all Verifier checks and ultimately output accept . The proof
approach is as follows:

Case 1: The Prover is extremely lucky. Due to the Verifier selecting random numbers , the folded
messages are sufficiently close to the encoding space, allowing the Prover to pass all subsequent Verifier
checks. For the Verifier, this corresponds to some "bad" events occurring, where there exists an

 such that

Using proof by contradiction through the Correlated Agreement theorem (which can derive the
corresponding Proximity Gaps theorem), it can be shown that the probability of such "bad" events is small,
proven to be at most .

Case 2: Suppose the Prover is not as lucky, meaning that the "bad" events described in Case 1 do not occur.
Then, in the IOPP.query phase, the Verifier selects , and in this scenario, the Prover might
evade the Verifier's checks by having the Verifier select points where the Prover has not cheated. Repeating
the IOPP.query phase times, the probability that the Prover manages to pass each check is at most

.

Combining Cases 1 and 2, for foldable linear codes, the IOPP Soundness is at least

Thus, Theorem 1 is proven.

Proof of Case 1

The following Corollary 1 demonstrates that for any specific , the probability that after folding, the result is
within a relative Hamming distance of , denoted as event , is at most . Therefore, if certain

events occur, their probability does not exceed the sum of the probabilities of these events, i.e.,

Let us examine Corollary 1 in detail.

Corollary 1 [ZCF23, Corollary 1] For any fixed and , such that , if
, then

The function is defined as follows. Let be the unique interpolated vectors such that

Then, is defined as

This essentially represents the process of folding with the random number .

Corollary 1 generalizes [BKS18] Corollary 7.3 to general foldable linear codes.

Proof Idea of Corollary 1: To prove that the relative Hamming distance after folding with the random
number is smaller than the original distance is a rare event, specifically not exceeding . Suppose, for

contradiction, that this event occurs with a significantly higher probability. Then, by directly applying the
Correlated Agreement theorem (from [BKS18] Theorem 4.4), it can be shown that for the affine space

, there exists a sufficiently large Correlated Agree subset within such that
there exist agreeing with and on , respectively. Encoding yields a codeword in

, thereby estimating , which contradicts our assumption. Therefore, the corollary
holds.

Proof of Case 2

To prove that repeating the IOPP.query phase times results in the Verifier outputting accept with
probability at most , we merely need to demonstrate that, in one execution of IOPP.query, the
probability that the Verifier outputs reject is at least .

Using the binary tree concept for the proof, we first define a "bad" node , as shown in the figure
below. These are the points where the Prover fails to pass step 3 of the IOPP.query protocol, meaning that
after the Verifier selects a random number , for any and , the Verifier computes in
step 2 of IOPP.query:

Subsequently, in step 3 of the IOPP.query protocol, the Verifier checks whether

At this point, we say that the node is "bad".

Next, consider from down to . For any , can generate a binary tree, forming
such binary trees as depicted below.

...

...

...

......

...

......

...

...

......

bad point

If there exists at least one "bad" node within any of these trees—assuming that all nodes from layers
 down to and their children are "good", i.e., they pass step 3 of the IOPP.query protocol—then

when a "bad" node occurs at level , the Verifier will reject. As shown in the figure, nodes from levels
to are all "good". This implies that as long as there is at least one bad node in the entire tree, the
Verifier will reject. If we let denote the ratio of "bad" nodes at layer , then the probability that the Verifier
rejects at layer is . Considering the entire IOPP.query phase, the Verifier's probability of rejection is thus

, where , representing those "bad" points where the folded does
not agree with .

Thus, the remaining task is to estimate . [ZCF23, Claim 2] provides inequalities for each .

Claim 1 [ZCF23, Claim 2] For any , define . For all
,

Under the soundness conditions, . Also, since , we have .
Thus, according to the claim:

hence,

Therefore, if no bad event occurs, executing the IOPP.query phase once, the probability that the Verifier
rejects is at least . This concludes the proof of Case 2.

References
[BBHR18] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In Proceedings of the 45th International Colloquium on
Automata, Languages, and Programming (ICALP), 2018. Available online as Report 134-17 on Electronic
Colloquium on Computational Complexity.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: sampling
outside the box improves soundness. In Thomas Vidick, editor, 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151
of LIPIcs, pages 5:1–5:32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. "Worst-Case to Average Case
Reductions for the Distance to a Code". In: Proceedings of the 33rd Computational Complexity
Conference. CCC ’18. San Diego, California: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
ISBN: 9783959770699.

[ZCF23] Hadas Zeilberger, Binyi Chen, and Ben Fisch. "BaseFold: efficient field-agnostic polynomial
commitment schemes from foldable codes." Annual International Cryptology Conference. Cham:
Springer Nature Switzerland, 2024.

	Notes on Basefold (Part V): IOPP Soundness
	IOPP Protocol
	Analysis Approach
	IOPP Soundness Theorem
	Proof of Case 1
	Proof of Case 2

	References

