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Previous articles have mentioned that BaseFold extends the FRI IOPP by introducing the concept of foldable codes.
Additionally, by combining the Sumcheck protocol, it can support PCS for multi-linear polynomials. The next crucial
question is how to explicitly construct such foldable codes. We aim for these foldable codes to possess the following
properties:

1. Efficient Encoding

2. Field Agnostic, i.e., applicable even for small fields

3. Compatible with PCS for Multi-linear Polynomials

Another important aspect of encoding is the consideration of the Minimum Relative Hamming Distance. If readers are
familiar with the FRI protocol, the Reed-Solomon codes used are likely not unfamiliar. They have a desirable property:
their distance meets the Singleton bound, i.e., , and are thus known as Maximum Distance Separable
(MDS) codes. These codes balance code length and error-correcting capability effectively, providing strong error
detection and correction with minimal redundancy, thereby saving encoding space. In PCS protocols, this allows verifiers
to perform checks more efficiently. Therefore, from a practical perspective, we also desire that such foldable codes
satisfy the fourth property:

4. Good Relative Minimum Distance

The BaseFold paper [ZCF23] constructs a type of code called Random Foldable Code (RFCs), which satisfies the
aforementioned properties. Next, we will explore how it achieves these points.

Efficient Encoding Algorithms  
The first article in this series has already introduced the concept of foldable linear codes and the BaseFold encoding
algorithm. Here is a brief review.

Definition 1 [ZCF23, Definition 5] (  - Foldable Linear Codes). Let  and  denote a finite field. A
linear code  with generator matrix  is called foldable if there exists a sequence of generator
matrices  and diagonal matrices  and  such that for any , the
following holds:

1. The diagonal matrices  satisfy  for all ;

2. The matrix  (arranged row-wise) is equal to

 

To efficiently construct a foldable linear code, a uniform sampling method is employed by first defining a set of random
foldable distributions.

Definition 2 [ZCF23, Definition 9] (  - Foldable Distributions). Fix a finite field  and . Let 
be the generator matrix of an  linear code that satisfies maximum distance separability, and let  be the
distribution that outputs  with probability . For each , we recursively define the distribution , which samples
the generator matrices  where  with , :

1. Sample ;

2. Sample  and define  as

mailto:jade@secbit.io
mailto:yu.guo@secbit.io


 

Once the initial generator matrix  is determined, uniformly sample  random elements from  (i.e., excluding the
zero element) to generate the diagonal elements of , thereby obtaining the next generator matrix . This process is
then recursively applied to generate . In PCS, generating foldable codes via uniform sampling aids in
achieving an efficient prover.

Note that the above definition requires the initial  to be the generator matrix of a linear code satisfying the MDS
property. However, as mentioned in a footnote in [ZCF23], this requirement is not strictly necessary. Including this
property is merely for simplifying the analysis of the code distance later on. In fact, the distance analysis holds for any
linear code.

Protocol 1  [ZCF23, Protocol 1]: BaseFold Encoding Algorithm

Input: Original message 

Output:  such that 

Parameters:  and diagonal matrices 

1. If  (i.e., ):

(a) Return 

2. Else:

(a) Split 

(b) Let , , and 

(c) Return 

By analyzing Protocol 1, we can see that encoding to obtain  requires only  field multiplications and  field
additions, i.e.,  field multiplications and  field additions. Overall, the encoding complexity is 
. Thus, we have introduced the explicit construction of Random Linear Foldable Codes provided by BaseFold and verified
that they indeed support efficient encoding.

Polynomials Save the World: Polynomial-Based Encoding  
Next, we examine the second and third properties of Random Foldable Codes:

2. Field Agnostic, i.e., applicable even for small fields

3. Compatible with PCS for Multi-linear Polynomials

As mentioned earlier, Reed-Solomon codes can achieve the Singleton bound, but only when the alphabet size is
relatively large (i.e., ). Fortunately, we can extend Reed-Solomon codes to Reed-Muller codes, transitioning from
univariate polynomial codes to multivariate polynomial codes. This allows applicability over small fields ( ),
although there is a slight trade-off in the balance between distance and error-correcting capability. However, this is
worthwhile.

Appendix D of [ZCF23] informs us that Random Foldable Codes are a special case of truncated Reed-Muller codes
(Punctured Reed-Muller Codes). Thus, Random Foldable Codes are field agnostic and, by venturing into the realm of
multivariate polynomials, are suitable for PCS of multi-linear polynomials.

We know that the encoding space of Reed-Solomon codes consists of univariate polynomials of degree at most . Reed-
Muller codes extend this to multivariate polynomials, with the encoding space comprising multivariate polynomials of
total degree at most .

For  with , define Reed-Muller encoding as ([GJX15])

 



Reed-Muller codes represent the set of evaluations of -variate polynomials of total degree at most  over . The
length of the encoding  is , and the dimension is .

Intuitively, Punctured Reed-Muller Codes are simply Reed-Muller codes with truncation. Specifically, the evaluation
points  are not taken from all of  but only a subset, denoted as . Typically, Punctured Reed-
Muller Codes allow this set  to be a multiset (i.e., permitting duplicate elements), but we do not impose this
requirement here. Let  denote the -linear code:

 

This is called a punctured Reed-Muller code ([GJX15]). From the definition, it is evident that this is merely a subset of
Reed-Muller codes, selecting only  points, which aligns with the literal meaning of "truncated" or "punctured."

With the concept of Punctured Reed-Muller Codes established, let's examine the following lemma provided in Appendix
D of [ZCF23], which states that foldable linear codes are a special case of punctured Reed-Muller codes.

Lemma 1 [ZCF23, Lemma 11] (Foldable Punctured Reed-Muller Codes). Let  be a foldable linear code with generator
matrices  and diagonal matrices , . Then there exists a subset 
such that , i.e., each codeword in  is a vector obtained by evaluating
a multilinear polynomial  at each point in .

Proof: By induction. For simplicity, consider  as a repetition code. In the base case,  is a
constant polynomial  evaluated at  distinct points. Assume that for , there exists a set  such that

. Without loss of generality, assign an integer  to index
each element in  sequentially, representing  as the -th element in .

Let , , , , and let  be a polynomial with coefficients
from . Finally, let  such that .
Then,

 

Therefore, let , and the lemma holds for . Thus, by
induction, the proof is complete.

Good Relative Minimum Distance  
Finally, we focus on the fourth property satisfied by Random Foldable Codes (RFCs):

4. Good Relative Minimum Distance

In [ZCF23], it is proven that RFCs have tight bounds on their minimum Hamming distance (a "tight" bound means that
the actual bounds are achievable). For example, an RFC over a 256-element finite field with a message length of  and
a code rate of  has a relative minimum distance of  with overwhelming probability. For a code with a rate of ,
the maximum achievable relative minimum Hamming distance is approximately . Clearly,  is fairly
close to . This is practically useful and implies that foldable codes generated via overwhelming probability (which
enable efficient PCS provers) also have good relative minimum distances (enabling efficient PCS verifiers).



The term "overwhelming probability" arises from the distribution  introduced during encoding.
When uniformly sampling diagonal matrices  from  and setting , the relative minimum distance of 
achieved with overwhelming probability is equal to

 

where  is the reciprocal of the code rate, ,  is the encoding length,  is the logarithm of the message

length, and  is the security parameter. By setting , it ensures that -random foldable linear codes
achieve the above relative minimum distance with a probability of at least .

Next, we examine how the result in equation  is derived. Our goal is to analyze the relative minimum distance of
foldable random codes . For a linear code, the minimum distance equals the minimum Hamming weight among all
non-zero codewords because

 

Since it is a linear code,  is also a codeword in , hence the last equality holds. Therefore, we want to show that

for any non-zero message, i.e., , the encoded codeword  does not have too many zero components.
Suppose it has at most  zero components, letting  denote the number of zero components in a vector, we aim
to show

 

Let  denote the length of the codeword . Then from , we have

 

Thus, the relative minimum distance that  can achieve is

 

The result in equation  is derived from equation . The remaining task is to analyze what  equals, that is, how
many zero components a codeword can have after encoding any non-zero message.

Utilizing Induction  

Using the powerful tool of induction, we analyze . Assume that with overwhelming probability (based on the choice of
diagonal matrices ), for any non-zero message , the encoded  has at most  zero
components. We analyze the case for . For any non-zero message ,

 

This means examining the number of zero components in the vector . Separating  and :

 

Let . For each , define  ， , and define a function:

 



 

If  or , then  or , indicating a zero component in the encoded vector.
Let's analyze whether  can be zero based on the values of  and , considering the following cases:

First, consider the case where . Here,  for any , meaning  and . Let
 denote such indices, and by the induction hypothesis, . Define  as those non-zero messages

that satisfy , i.e.,

 

In this case, , resulting in  zero components in .

Consider the second case, where  and . Here, , so no zero components are found.

Next, consider the last row of the table where . In this case, the index  is certainly not in . Define a subset
 such that

 

For each , define a random variable

 

where  is an indicator function that equals  if the condition inside holds, and  otherwise. Thus,  indicates how
many zero components exist at position  in  and , with possible values . Notice that  is an
independent Bernoulli trial because  is uniformly sampled from . Let  satisfy . Then, when

,  and when , . Analyzing the possible values of :

1. : This implies  and , which leads to . This would mean ,
which is impossible since .

2. : This implies either  or , meaning  or . The probability of
this occurring is .

3. : This occurs when  and , with probability .

For all , summing up all  gives the total number of zero components in , denoted as
.

Having analyzed all cases in the table, we obtain

 

Next, we analyze  and  to show that for any non-zero message ,  has at most  zero
components with overwhelming probability. We analyze the probability that  has at least  zero
components:

 



We observe that for an index set , if any set  is selected, each index  has two possibilities: to
include it in  or not. Therefore, there are a total of  possible selections for the set . When we enumerate all
possible sets , the union of the resulting , denoted by , can cover all messages in

. Lemma 2 in paper [ZCF23] tells us that the size of the set  is at most . Thus, by iterating
through all  possible sets , each set  contains at most  messages . By combining all  and
considering the bounds on the size of each , we can conclude that when  is sufficiently large, that is, when

, the expression  becomes sufficiently small. In this case, for any non-zero

vector , we have , that is,  contains at most  zero
components.

The BaseFold paper [ZCF23] presents a more specific statement in the form of a theorem.

Theorem 1 [ZCF23, Theorem 2] Fix any finite field  with , and let  be the security parameter. For a
vector  with components in , let  denote the number of zero components in . For any , let  be a

-foldable distribution, and for each , set , . Then,

 

where  and for each , , with

 

Equation  indicates that the number of zero components in  is bounded by  with negligible probability if
exceeded. Given the iterative formula , we can compute  through iterative summation. Consequently,
the maximum relative number of zero components in  is , and calculating  yields the minimum

relative Hamming distance  of , resulting in equation :

 



From the iterative formula , we observe that as  increases,  grows by more than . Since the
encoding length doubles each iteration, the relative maximum number of zero components increases, and therefore the
minimum relative Hamming distance decreases. If  is sufficiently large, then through this iterative method, we
obtain with overwhelming probability that . From  to , this encoding method does
not decrease . In the IOPP protocol, if the initial minimum relative Hamming distance is large, then  remains
large with overwhelming probability, which plays a significant role in analyzing the soundness of the IOPP.
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