
Notes on Basefold (Part III): MLE Evaluation Argument  
Yu Guo yu.guo@secbit.io

Jade Xie jade@secbit.io

Assume we have an MLE polynomial , an evaluation point , and the result of the polynomial's operation at the
evaluation point . We aim to construct a Polynomial Evaluation Argument based on the Basefold-IOPP protocol.

Based on FRI, we can utilize the DEEP Method to construct a PCS protocol, which verifies the existence of a Low Degree Polynomial
. However, the FRI protocol can only handle the case of Univariate Polynomials. For MLE Polynomials, we

generally need to use the following extended polynomial remainder theorem to reduce it to a quotient polynomial existence problem:

 

For example, Virgo adopts this scheme for the MLE PCS protocol. However, Basefold [ZCF23] presents a refreshing approach to implementing
the MLE Evaluation Argument by combining the Basefold-IOPP protocol and the Sumcheck protocol. We can use the Sumcheck protocol's
summation and proof as the main framework of the protocol, then use Basefold-IOPP to ensure the Low degree of the MLE polynomial.
Additionally, the evaluation of the MLE polynomial at random points generated after multiple rounds of folding in the Basefold-IOPP protocol
compensates for the correctness proof of the evaluation required in the last round of the Sumcheck protocol.

Final Output of the Basefold-IOPP Protocol  
For demonstration purposes, we use an MLE polynomial  with , defined as follows:

 

Here,  is the coefficient vector of , defined above as the Coefficients Form of the MLE polynomial.

Let's revisit the folding process of the Basefold-IOPP protocol. First, let  correspond to the codeword after encoding  with
. In each folding round, the Verifier sends a random challenge  to the Prover, who then generates  by folding , and sends the

encoded codeword (as an Oracle) to the Verifier.

After one folding round of the Basefold-IOPP protocol, the polynomial corresponding to the codeword obtained by both parties, 
, is:

 

After another folding round, the polynomial corresponding to the codeword, , is:

 

Finally, the polynomial corresponding to the codeword, the constant polynomial , is as follows:

 

Upon closer examination,  is exactly the evaluation of  at .

Thus, in the final round of the Basefold-IOPP protocol, the Prover sends the folded constant polynomial to the Verifier. The Verifier then uses

the Query-phase to verify the correctness of each folding step. Meanwhile, the Verifier also obtains the evaluation result  at the

random point . From another perspective, the Basefold-IOPP protocol not only completes the Proximity proof but also
provides an additional evaluation of  at a random point. More precisely, this is a proof of a vector inner product:

 

However, this MLE evaluation point is not a pre-negotiated public input but is instead composed of random challenges generated during the
execution of the Basefold-IOPP protocol.

In summary, in the final round of the IOPP protocol, the Prover folds to produce a constant polynomial, denoted as , which is precisely 
evaluated at the random point . What we need is to prove the correctness of  at a public point, such as .

 

The subsequent question becomes: How can we use the evaluation of  at a random point to prove the correctness of its evaluation at
another public point?

Leveraging Sumcheck  

mailto:yu.guo@secbit.io
mailto:jade@secbit.io


We can revisit  by utilizing the properties of MLE. According to the definition of MLE, we have the following equation:

 

Here,  is the Lagrange Polynomial of MLE, defined as:

 

It is easily verified that when , , the left side of equation  equals . Observing each summand
, only when the vectors  are completely identical does ; otherwise, they all equal . Therefore, the right side of the

equation reduces to , ensuring the equality holds.

This means that both sides of equation  agree on their values over the 3-dimensional Boolean HyperCube. Based on the uniqueness
property of MLE, we can conclude that  holds for any .

Although the above is fundamental knowledge of MLE, note that equation  introduces a new perspective: we can transform the
evaluation problem of  into a Sumcheck problem:

 

It is immediately apparent that we can use the Sumcheck protocol to perform a "sum proof" on the above equation. An important function of
the Sumcheck protocol is to transform a "summation problem" into two MLE polynomial evaluation problems (specifically for  and ) at a
random point. However, in general, this approach is meaningless because, in the last round of Sumcheck, we need to prove the evaluation of

 at a new point, leading to a circular proof situation: we originally prove the evaluation of a polynomial at one point, then use the Sumcheck
protocol to transform this proof into an evaluation at another point. This makes the Sumcheck protocol process redundant and useless.
Typically, the protocol would rely on another MLE Evaluation Argument protocol, where the Prover sends the final evaluation and its
correctness proof, thereby concluding the Sumcheck protocol. But here, we cannot rely on another MLE PCS protocol because our goal is to
construct an MLE Evaluation Argument protocol, not to depend on an existing MLE PCS.

However, this problem is not difficult to solve because the previously introduced Basefold-IOPP protocol provides a byproduct: a proof of 's
evaluation at a random point. If the Sumcheck protocol and the Basefold-IOPP protocol share random challenges, the value provided by
Basefold-IOPP in the final step can compensate for the correctness proof of the evaluation required in the last round of Sumcheck. Another
remaining issue is how to handle the evaluation proof of . This is simpler because  is a public polynomial, allowing the Verifier to compute
it independently without requiring the Prover to send an evaluation proof. Moreover, computing the evaluation of  only has a complexity of

, which does not increase the Verifier's burden or affect the Verifier's succinctness. At this point, the Sumcheck protocol's role is no
longer redundant but becomes crucial: it transforms the problem of proving a polynomial's evaluation at a public point into a proof of
its evaluation at a random point.

Next, we need to synchronize the execution of the Basefold-IOPP protocol and the Sumcheck protocol, allowing both protocols to share a set
of random challenges. This way, in the final step of both protocols, we can complete the collaboration, thereby ultimately proving the
correctness of .

Following this approach, we attempt to outline the protocol flow when .

Public Inputs

1. Commitment of , 

2. Evaluation point 

3. Operation value 

Witness

Coefficient vector of MLE , 

Evaluation vector of , 

First Round: Prover sends the univariate polynomial 

 

Since the right side is a degree 2 Univariate Polynomial, the Prover can compute the coefficients of :

 



Here,  is the evaluation vector of . It is easy to verify that .

Second Round: Verifier sends challenge 

Third Round: Prover and Verifier simultaneously execute the Basefold-IOPP protocol and the Sumcheck protocol:

Prover computes 

 

Prover sends the folded vector encoding: 

Prover computes  as the summation value for the next round of the Sumcheck protocol

Prover computes and sends 

 

Since the right side is also a degree 2 Univariate Polynomial in , the Prover can calculate the coefficients of : .

Fourth Round: Verifier sends challenge 

Fifth Round: Prover continues executing the Basefold-IOPP protocol and the Sumcheck protocol:

Prover computes 

 

Prover sends the folded vector encoding 

Prover computes the summation value for the next round of the Sumcheck protocol: 

Prover computes and sends 

 

Assume the coefficients of  are represented as .

Sixth Round: Verifier sends challenge 

Seventh Round: Prover continues executing the Basefold-IOPP protocol:

Prover computes , a constant polynomial

 

Prover sends the folded vector encoding 

Eighth Round: Verifier validates the following equations:

1. Verifier verifies several rounds of Basefold Queries, 

2. Verifier checks the correctness of each folding step in Sumcheck:

 

3. Verifier checks whether the final encoding  is correct

 

An Alternative Folding Method  



In the Basefold paper, the PCS protocol requires that the MLE polynomial  be converted to the Coefficients Form
beforehand, and then follow the protocol described in the previous section for the proof. However, in many Sumcheck-based SNARK systems,
the Sumcheck protocol finally produces the Evaluation Form of the MLE polynomial, that is, the evaluation of the MLE polynomial on a
Boolean HyperCube. Therefore, if we directly connect the SNARK protocol to Basefold-PCS, we would still need to convert the MLE polynomial
from the Evaluation Form to the Coefficients Form. This conversion algorithm has a complexity of , where , and  is the
number of variables in the MLE polynomial. Below is the definition of the Evaluation Form of :

 

As noted in the FRI-Binius paper, we do not need to convert the MLE polynomial from the Evaluation Form to the Coefficients Form. Instead,
we can directly construct the PCS protocol in the Evaluation Form. In the previous section, the reason we needed the Coefficients Form of

 was that the Basefold-IOPP protocol's Commit method required the coefficients of . If we follow
the folding method of the Basefold-IOPP protocol described below, we can directly construct the PCS protocol in the Evaluation Form.

Now, let's consider the folding method of the Evaluation Form of . First, expand the definition of the Evaluation Form of
:

 

We can fold the above Evaluation Form, ultimately obtaining the evaluation . For example, we can fold the Evaluation Form of
 with respect to  to obtain:

 

Next, we need to decompose :

 

When , the right side simplifies to ; when , it simplifies to . Then, continue

simplifying :

 

This is equivalent to folding (linear combination) the vectors  and  with . Compared with the
folding method in the Basefold-IOPP protocol, it uses  to fold (linear combination) the vectors  and . If we
continue to fold in the new way, we can eventually get the same folding result as the Basefold-IOPP protocol.

 

Continuing the folding process, we eventually obtain:

 

Can we improve the folding method of the Basefold-IOPP protocol so that it can directly fold the Evaluation Form of the MLE polynomial?

Basefold-IOPP Protocol Based on the Evaluation Form  
Next, we attempt to outline the Basefold-IOPP protocol for the Evaluation Form of  when . First, we rewrite the folding
function from the previous article:

 



From earlier discussions, we know that the folding function has the following homomorphic property: after folding, the codeword is
equivalent to the original message being folded and then encoded, expressed as:

 

Similarly, we can prove that the new folding function satisfies the above property. We can attempt to fold an element in the codeword 
using the new folding function:

 

The above derivation demonstrates that the new folding function also satisfies the homomorphic property concerning the encoding function:

 

Additionally, we can prove that the new folding process does not affect the reliability of the Basefold-IOPP protocol, i.e., the Minimum
Hamming Weight of the folded codeword remains above a lower bound.

Thus, we have an important conclusion: whether we use  or , both can be used to construct a Proximity-Proof protocol without
significant differences.

Next, we outline the Commit-phase protocol flow for better understanding:

Public Inputs

Codeword of the MLE polynomial , 

Witness

Evaluation vector of the MLE polynomial , 

First Round: Verifier sends a random number 

Second Round: Prover computes  and sends it to the Verifier

The process of computing  is as follows:

 

The computed , meaning that  is the codeword of , where  is the folded result of  with respect to :

 

Third Round: Verifier sends a random number 

Fourth Round: Prover computes  and sends it to the Verifier

The process of computing  is as follows:

 

The computed , where  is the folded result of  with respect to :

 

Fifth Round: Verifier sends a random number 

Sixth Round: Prover computes  and sends it to the Verifier

The process of computing  is as follows:

 

Similarly, , meaning  is the codeword of , where  is the folded result of  with respect to :

 



Then, we can improve the Evaluation Argument protocol.

Basefold Evaluation Argument Protocol Based on the Evaluation Form  
Public Inputs

1. Commitment of , 

2. Evaluation point 

3. Operation value 

Witness

Evaluation vector of MLE , 

Such that

 

First Round: Prover sends the evaluations of  at points 

 

Since the right side is a degree 2 Univariate Polynomial, the Prover can compute the evaluations of  at :

 

Here,  is the evaluation vector of .

Second Round: Verifier sends challenge 

Third Round: Prover simultaneously executes the Basefold-IOPP protocol and the Sumcheck protocol:

Prover sends the folded vector encoding: 

Prover computes  as the summation value for the next round of the Sumcheck protocol

Prover computes the evaluations vector of : 

Prover computes and sends 

 

Since the right side is also a degree 2 Univariate Polynomial in , the Prover can compute the evaluations of  at :
.

Fourth Round: Verifier sends challenge 

Fifth Round: Prover continues executing the Basefold-IOPP protocol and the Sumcheck protocol:

Prover sends the folded vector encoding 

Prover computes the summation value for the next round of the Sumcheck protocol: 

Prover computes the evaluations vector of 

Prover computes and sends the evaluations of  at : 

 

Sixth Round: Verifier sends challenge 

Seventh Round: Prover continues executing the Basefold-IOPP protocol:

Prover sends the folded vector encoding 

Eighth Round: Verifier validates the following equations:

1. Verifier sends several rounds of Query, 

2. Verifier checks the correctness of each folding step in Sumcheck:

 



3. Verifier checks whether the final encoding  is correct

 

At this point, we have obtained a Basefold Evaluation Argument protocol based on the Evaluation Form. It can be directly connected to
Sumcheck-based zkSNARKs or similar Jolt-style zkVMs.

References  
[ZCF23] Hadas Zeilberger, Binyi Chen, and Ben Fisch. "BaseFold: efficient field-agnostic polynomial commitment schemes from foldable
codes." Annual International Cryptology Conference. Cham: Springer Nature Switzerland, 2024.

Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. "Transparent polynomial delegation and its applications to zero
knowledge proof." In 2020 IEEE Symposium on Security and Privacy (SP), pp. 859-876. IEEE, 2020.


	Notes on Basefold (Part III): MLE Evaluation Argument
	Final Output of the Basefold-IOPP Protocol
	Leveraging Sumcheck
	An Alternative Folding Method
	Basefold-IOPP Protocol Based on the Evaluation Form
	Basefold Evaluation Argument Protocol Based on the Evaluation Form
	References


