
Notes on Basefold (Part II): IOPP  
Yu Guo yu.guo@secbit.io

Jade Xie jade@secbit.io

Proof of Proximity  
Below, we present a proof of implementing IOPP using Foldable codes.

Suppose there is an MLE polynomial  represented as follows:

 

Since  is a multivariate polynomial, there are  unknowns, making the length of its coefficient vector . Note that we
choose the Lexicographic Order as the sorting method for the polynomial.

We encode the coefficient vector  of  to obtain the codeword , which has a length of . Then, we use a Hash-
based Merkle Tree to generate the commitment:

 

Similar to the FRI protocol, the Basefold-IOPP protocol is used to prove that a commitment  is with high probability
"close" to a vector encoded by . Therefore, this protocol is called a Proof of Proximity. This protocol is one of the core
protocols for constructing the Evaluation Argument.

Proof of Proximity leverages a remarkable property of linear codes: the "Proximity Gap." Specifically, if two vectors  are far
from the legitimate codeword space, then their random linear combination  will either have a very low probability of
becoming legitimate or will remain far from the legitimate codeword space:

 

This indicates that the folding process of the codeword does not disrupt the distance between the vector and the legitimate
codeword space. By folding the vector sufficiently, the Verifier can use a very short code to verify whether the final folded vector
is a legitimate codeword, thereby determining whether the original vector is a legitimate codeword.

 Notes on Proximity Gap Proof of Proximity utilizes a remarkable property of linear codes: the "Proximity Gap."
Specifically, for two vectors , folding them with a random scalar  yields a set .
Different  correspond to different elements in set . The "Proximity Gap" theorem states that the elements in this set are
either all close to the legitimate codeword space  or only a negligible fraction of the elements are close to , while the
majority are at a distance of  from . In probabilistic terms:

 

Thus, the Verifier can confidently use a random scalar  for folding, because even if only one of the two vectors 
provided by a cheating Prover is at a distance  from , the probability that the folded result is close to  is only , which
is very small. In other words, a cheating Prover would need to be as lucky as winning the lottery to evade detection by the
Verifier's scrutiny. Therefore, if the Prover initially selects a  that is far from the legitimate codeword space, the Verifier
selects a series of random scalars to iteratively fold it until obtaining . During this process, there is a high probability that

 does not become close to the legitimate codeword space, allowing the Verifier to detect cheating.

The "Proximity Gap" theorem provides a significant advantage to the Verifier: instead of verifying all elements in the set
 to check their proximity to the legitimate codeword space, the Verifier only needs to randomly

select one point for verification. This greatly reduces the Verifier's computational load.

The Proof of Proximity protocol consists of two phases: the Commit-phase and the Query-phase. The former involves the
subprotocol that performs multiple folding processes of the codeword and generates commitments (or oracles) for each folded
codeword. The latter, the Query-phase, involves the Verifier performing random sampling to verify the legitimacy of each folding
step.

Commit-phase
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Commit-phase  
First, we explain the Commit-phase. The Prover performs multiple foldings of the encoded  (with length ), obtaining
codewords of lengths , denoted as , and then sends them to the Verifier.

Remember that this is an interactive protocol with a total of  rounds of interaction. In each round (assume the -th round,
), the Prover folds  based on the random scalar  sent by the Verifier to obtain a new codeword, denoted as .

After  rounds, the Prover obtains a codeword of length , denoted as . The Prover then commits to each  and
sends  as the output of .

Next, we analyze the technical details of a single folding . Suppose  is a legitimate codeword (i.e., satisfying ),
with length :

 

We split this vector into two parts and stack them:

 

At this point, the Verifier needs to provide a random scalar . We perform a random linear combination of the two rows, or in
other words, fold them:

 

The above is the folded vector . Assuming the Prover is honest, the folded vector should be a legitimate  codeword. The
function  in the above equation is defined as follows:

 

How should we understand the  function? It is essentially a polynomial interpolation process. We treat the two rows to
be folded as sets of points on two separate domains, specifically the  and

 used in the recursive encoding process:

 

We then interpolate each column of the above matrix over the domain  to produce a set of  polynomials,

denoted as , where . The Prover then evaluates each  at , resulting in  values at

. These values constitute the new codeword .

The definition of the folding function aligns with the linear polynomial interpolation process. We can manually derive the origin of
the folding function definition. Since we are performing a half-folding of , the folded codeword will have  values
corresponding to "linear polynomials." Suppose the -th polynomial describes a line passing through two points  and

. The interpolating polynomial  for these two points can be defined as:

 



Substituting , and  yields the definition of the folding function  as above.

 

If  and  are negatives of each other, i.e., , then  becomes the familiar definition from the FRI protocol:

 

Since we have defined the folded codeword , the definition of the folding function needs to be consistent with the
codeword space generated by the generator matrix . Continuing with this intuition, assume that in the -th round, if  is
indeed the encoding of , then by definition, it satisfies the properties of Foldable Codes:

 

The Prover folds it in half to obtain the new codeword:

 

We now verify that each  is a linear combination of  and  with respect to :

 



Thus, the entire folding of  is equivalent to a linear combination of  and  with respect to :

 

The folded codeword is exactly the half-folded version of  with respect to , denoted as , and then encoded with 
to obtain . This is not surprising because Foldable Codes and the recursive folding of codewords are inverse processes, so
the parameters  and  introduced by the encoding are eliminated after folding.

Below, we walk through a simple example to illustrate how the Commit-phase of the Basefold-IOPP protocol operates.

Public Input

The codeword of the MLE polynomial , 

Witness

The coefficient vector of the MLE polynomial , 

First Round: Verifier sends a random scalar 

Second Round: Prover computes  and sends it to the Verifier

The process of computing  is as follows:

 

The computed , meaning  is the codeword of , where  is the folding of  with respect to :

 

Third Round: Verifier sends a random scalar 

Fourth Round: Prover computes  and sends it to the Verifier

The process of computing  is as follows:

 

The computed , meaning  is the codeword of , where  is the folding of  with respect to :

 

Fifth Round: Verifier sends a random scalar 

Sixth Round: Prover computes  and sends it to the Verifier

The process of computing  is as follows:

 

Similarly, , meaning  is the codeword of , where  is the folding of  with respect to :

 

At this point, the Commit-phase ends, and the Prover has sent  to the Verifier. Upon receiving them, the Verifier first
checks whether  is a constant polynomial. However, this alone is insufficient; the Verifier also needs to validate that the
Prover's folding operations were honest. If all foldings  were to be verified, the Verifier would lose succinctness and,
consequently, verification efficiency. Due to the Proximity Gap property, the Verifier only needs to perform a limited number of
validations to ensure that  is a legitimate codeword.

Query-phase  
Similar to the FRI protocol, in the Query-phase, the Verifier conducts multiple rounds of random sampling on the

 sent by the Prover to verify the honesty of the folding process. We now discuss each round of the sampling
process.



The Verifier will randomly select a position  within  and send it to the Prover, noting that , where  pertains
only to . The Prover opens the points  and  and also sends the value at position  in the folded codeword

, i.e., , along with the Merkle Path for these three points.

Upon receiving these, the Verifier first verifies that these three points correspond correctly to the codewords  and . Then,
the Verifier checks whether they satisfy the folding relationship:

 

Merely verifying the folding relationship from  to  is insufficient. The Verifier must also validate the folding relationships
from  to . The Prover must additionally provide the points from  to . Here, the Verifier does not need to select
new random scalars but continues to use , because in the next round of folding, the position  will be folded with
another symmetrical point regarding . The specific symmetrical position depends on the situation: if , then

 is the symmetrical point; if , then  is the symmetrical point. Assume ; then
the Prover sends  and its Merkle Path to the Verifier to allow the Verifier to check the folding relationship from

 to .

In this way, by providing a single random scalar , the Verifier can verify all the folding relationships from  to . This
verification process constitutes one round.

To elevate reliability to a sufficient level, the Verifier must perform multiple rounds to ensure that the Prover has no room to
cheat. The Query-phase leverages the Proximity Gap property. A cheating Prover who alters the codeword is likely to be far from
the legitimate encoding space, enabling the Verifier to detect cheating with only a small number of sampling attempts.

Summary  
This article described the framework of the Commit-phase and Query-phase of the Basefold-IOPP protocol. This framework
generalizes and extends the FRI protocol, expanding from RS-Codes to any Foldable Linear Codes. However, it is important to
note that Basefold does not support codeword folding of degree greater than 2. This is because the Basefold-IOPP protocol must
not only perform Proximity Testing but also provide an operational result of an MLE polynomial. This will be the topic of the next
article in this series.

References  
[ZCF23] Zeilberger, H., Chen, B., Fisch, B. (2024). BaseFold: Efficient Field-Agnostic Polynomial Commitment Schemes from
Foldable Codes. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in
Computer Science, vol 14929. Springer, Cham.

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed–
Solomon Codes. In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science, pages 900–909, 2020.


	Notes on Basefold (Part II): IOPP
	Proof of Proximity
	Commit-phase
	Query-phase
	Summary
	References


