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Basefold can be regarded as an extension of FRI, thereby supporting Proximity Proofs and Evaluation Arguments
for Multi-linear Polynomials. Compared to Libra-PCS, Hyrax-PCS, and Virgo-PCS, Basefold does not rely on the
MLE Quotients Equation to prove the value of an MLE at the point :

 

Instead, Basefold leverages the Sumcheck protocol to reduce the value of  at a pre-specified point to its
value at a random point . The latter can then utilize an FRI-like approach, where the verifier provides a
challenge vector  to recursively fold . This approach allows the prover to simultaneously demonstrate an

upper bound on the degree of  (Proof of Proximity) and, based on the characteristics of MLE, prove the
value of . By combining the Sumcheck protocol with an FRI-style folding protocol, we elegantly obtain an
Evaluation Argument for an MLE.

Another significant insight of Basefold is how to apply an FRI-style Proof of Proximity over arbitrary finite fields. It
is known that the FRI protocol fully utilizes the structure of Algebraic FFTs over finite fields and performs
interactive folding, which allows the codeword length to be exponentially reduced while maintaining the
minimum relative Hamming distance bound, thereby enabling the verifier to easily verify a folded short
codeword. However, for general finite fields where constructing FFTs is challenging, the FRI protocol cannot be
directly applied.

Basefold introduces the concept of Random Foldable Codes. This is a framework for encoding using a recursive
approach, where recursive encoding can be seen as the inverse process of recursive folding. In the Commit
phase of the Basefold protocol, the prover first encodes each segment of the message using a base encoding
scheme , then encodes these codewords pairwise (a process similar to the butterfly operation in FFT
computations), and finally obtains a single codeword. In the Commit-phase stage, the prover and verifier
interactively perform half-folding on the committed single codeword and then commit to the half-folded
codeword. It can be proven that the Relative Hamming Distance of this half-folded codeword remains above a
clear lower bound. The parties then continue folding until the length is reduced to that of -encoded length. In
this way, both parties obtain a series of committed codewords. Note that since the encoding process is
performed recursively, the codeword possesses folding capabilities similar to those of RS Code encoding. The
advantage of this approach is evident: using Recursive Folding FRI protocols results in significantly smaller proof
sizes compared to protocols like Tensor Codes. Additionally, Basefold's technique can be applied to any finite
field ( ), including extension fields . Naturally, similar to the FRI protocol, the commitment
computation in the Basefold protocol requires  time complexity, while the prover's computational
effort in the subsequent proof process remains at . If a Merkle Tree is used as the commitment scheme for
the codeword, the proof size complexity is .

In this article, we first explore the concept of Foldable Linear Codes.

What are Foldable Linear Codes  
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Suppose there is a linear code  based on the finite field , where the message length is , and

the codeword length is . Assume that the encoded length is amplified by a factor of  compared to the
message length, i.e.,  is the traditional code rate. According to the definition of linear codes, there must exist
an encoding matrix  such that

 

Then, we can construct a new encoding matrix  based on the encoding matrix :

 

where  and  are two diagonal matrices with diagonal elements set to the parameters of the encoding
scheme, which we will explain later.

If we consider  as the encoding matrix of another linear code , then the parameters of  are
. That is, compared to , the code rate of  remains unchanged, but the message and codeword

lengths are both doubled.

For example, suppose , and the base encoding scheme  is a simple Repetition Code
with  and . Thus, the message length of  exactly meets the requirements of , i.e.,

 and the encoded length is .

The encoding matrix  of the base code  is defined as:

 

Assume the diagonal elements of the system parameter  are , and those of  are 
. We construct  using the formula above:

 

Substituting  directly, we obtain:

 

We list the encoded codeword vector separately:

 

Directly performing matrix operations, the structure of this encoding is not very clear. Let us approach it
differently: the message  can be split into two equal-length parts, the left  and the right

,

 



For the  matrix on the right side of the equation, we first compute the top-left and top-right submatrices,
which are identical submatrices obtained by encoding  with :

 

And the bottom-left submatrix is:

 

The result for  is almost the same, with  replaced by :

 

It is easy to verify that we obtain the same result for  encoded with .

We can simplify this computation process with the following equation:

 

If we consider  as a system parameter (constant), the encoding computation in the above equation has a
complexity of , including two  encodings and two component-wise additions of length . Additionally,
this equation resembles the butterfly operation in (Multiplicative) FFT algorithms:

 

In fact, as illustrated later, the encoding process of Foldable Codes is a generalized extension of RS-Code.

We can further recursively construct , eventually obtaining a linear code , where

the message length is , and the encoding length is . The code rate is , where 
is the message length of the base encoding,  is the base encoding length, and the choice of the base encoding
is highly flexible.

We use the symbol  to denote the encoding matrix (or generator matrix) of , . For

, we have the following recursive relation:

 

Here,  and  are two diagonal matrices,

 

and their diagonal elements at the same positions are distinct:

 



Assuming we can compute  using the above recursive equation, then for a message  of length , the
encoding process can be directly calculated as follows:

 

However, encoding directly using the generator matrix  is relatively inefficient, with a computational
complexity of . Instead, based on the above derivation, if we do not directly use the  matrix but
instead employ a recursive approach to encode , the basic idea is to split  into two parts  and , then
encode  and  separately using , and finally concatenate the encoded  and .

 

In this way, the encoding process using  is transformed into two encoding processes using . We can
continue to recursively compute  and  until the split message length meets , after which we
simply use the generator matrix  for the base encoding. The encoding time complexity at this stage is

. With a total of  recursive rounds, the overall computational effort is reduced to .

RS code (foldable)  
The RS code used in the FRI protocol satisfies the aforementioned conditions, making RS code foldable.

First, let us examine the generator matrix in the RS code:

 

where  is an -th root of unity, satisfying , with  being the codeword length and  the message length.
We can observe that the above matrix is a Vandermonde matrix. We will now explain how the generator matrix
of the RS code satisfies the definition of Foldable Codes. For demonstration purposes, assume , ,

, , , and ,

 

First, we need to reorder the rows of  according to the Reversed Bit Order (RBO) sequence. The reason for
performing RBO reordering is related to the structure of Multiplicative FFTs, as explained in another article. The
RBO sequence refers to reversing the binary representation of the indices and using these reversed binary
numbers as the new indices. The RBO sequence is . By reordering the rows of the above
Vandermonde matrix according to the RBO sequence, we obtain the following matrix, denoted as :

 



Observing the reordered matrix, we can see that this matrix can be decomposed into submatrix operations
involving  and , :

 

where  is:

 

We can verify that the bottom-left submatrix can be expressed as :

 

Here, the matrix  is indeed a diagonal matrix satisfying the requirement that its diagonal elements are distinct.
The bottom-right submatrix can be decomposed as follows:

 

where  is exactly , ensuring that the elements of  are distinct from those of :

 



Next, we can continue to recursively decompose :

 

Here, , , and  are:

 

By recursively decomposing, we reach the base encoding , which remains an RS-Code, denoted as
. Thus, we have proven that RS-Code is a foldable code. However, it is evident that RS-Code

imposes requirements on , needing it to contain a multiplicative subgroup of order , where  is a positive
integer, and ensuring that  is large enough to accommodate a codeword length of .
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